Molecular electronic plasmonics

Abstract Molecular electronic plasmonics (MEP) is an area of research that utilizes the electronic properties of molecules to control and modulate surface plasmons and holds the potential to develop on-chip integrated molecular-plasmonic devices for information processing and computing. Combining molecular electronics with plasmonics gives the opportunity to study both charge transport in molecular electronic devices and plasmonics in the quantum regime. Here, we review the recent progress in molecular electronic plasmonics and mainly focus on the areas of quantum plasmonics, and plasmon excitation and detection. This review also identifies challenges that need to be resolved to drive this field forward including improving models aimed to advance our understanding of electron-plasmon interactions in the quantum tunneling regime. Future progresses can be expected towards incorporating functional molecules to actively control MEP devices and integration of MEPs with other circuit components.

[1]  C. Bobisch,et al.  Visualization of Fermi’s Golden Rule Through Imaging of Light Emission from Atomic Silver Chains , 2009, Science.

[2]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[3]  L. Andrew Lyon,et al.  Unidirectional Plasmon Propagation in Metallic Nanowires , 2000 .

[4]  H. Chu,et al.  On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions , 2016, Nature Photonics.

[5]  J. Hummelen,et al.  Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts. , 2011, Journal of the American Chemical Society.

[6]  F. Mathevet,et al.  Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. , 2014, Physical review letters.

[7]  R. Eelkema,et al.  Signatures of quantum interference effects on charge transport through a single benzene ring. , 2013, Angewandte Chemie.

[8]  W. Ho,et al.  Controlling single-molecule negative differential resistance in a double-barrier tunnel junction. , 2005, Physical review letters.

[9]  Pierre Berini,et al.  Surface plasmon waveguide Schottky detector. , 2010, Optics express.

[10]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[11]  Joel K. W. Yang,et al.  Electrically-Excited Surface Plasmon Polaritons with Directionality Control , 2015 .

[12]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[13]  Y. Selzer,et al.  Response of molecular junctions to surface plasmon polaritons. , 2010, Angewandte Chemie.

[14]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[15]  D. Gust,et al.  Optical modulation of molecular conductance. , 2011, Nano letters.

[16]  Rui Zhang,et al.  Generation of molecular hot electroluminescence by resonant nanocavity plasmons , 2010 .

[17]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[18]  M. Burghard,et al.  Surface plasmon coupling to nanoscale Schottky-type electrical detectors , 2010 .

[19]  C. S. S. Sangeeth,et al.  Equivalent circuits of a self-assembled monolayer-based tunnel junction determined by impedance spectroscopy. , 2014, Journal of the American Chemical Society.

[20]  Guillaume Schull,et al.  Electron-plasmon and electron-electron interactions at a single atom contact. , 2009, Physical review letters.

[21]  J. Neaton,et al.  Single-molecule diodes with high rectification ratios through environmental control. , 2015, Nature nanotechnology.

[22]  J. Tsang,et al.  Light emission from tunnel junctions on gratings , 1981 .

[23]  Lukas Novotny,et al.  Surface-enhanced nonlinear four-wave mixing. , 2010, Physical review letters.

[24]  G. Whitesides,et al.  Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n-alkanethiolates. , 2014, Journal of the American Chemical Society.

[25]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[26]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[27]  Rupali Reddy Pasula,et al.  Long‐Range Tunneling Processes across Ferritin‐Based Junctions , 2016, Advanced materials.

[28]  S. Louie,et al.  Mechanically controlled binary conductance switching of a single-molecule junction. , 2009, Nature nanotechnology.

[29]  S. Ushioda Light emission associated with tunneling phenomena , 1990 .

[30]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[31]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[32]  F. Sanz,et al.  Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. , 2016, Nano letters.

[33]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.

[34]  J. Tucker,et al.  Quantum limited detection in tunnel junction mixers , 1979 .

[35]  Damien Thompson,et al.  Controlling the direction of rectification in a molecular diode , 2015, Nature Communications.

[36]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[37]  H. Ditlbacher,et al.  Organic diodes as monolithically integrated surface plasmon polariton detectors , 2006 .

[38]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[39]  Peter Liljeroth,et al.  Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules , 2007, Science.

[40]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[41]  J. Baumberg,et al.  Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.

[42]  S. Mashiko,et al.  Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. , 2004, Physical review letters.

[43]  Garnett W. Bryant,et al.  The Morphology of Narrow Gaps Modifies the Plasmonic Response , 2015 .

[44]  Fredrik Westerlund,et al.  Single-molecule electronics: from chemical design to functional devices. , 2014, Chemical Society reviews.

[45]  James K. Gimzewski,et al.  Enhanced Photon Emission in Scanning Tunnelling Microscopy. , 1989 .

[46]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.

[47]  Zhongfan Liu,et al.  Conductance switching and mechanisms in single-molecule junctions. , 2013, Angewandte Chemie.

[48]  R. Chiechi,et al.  Bottom‐Up Molecular Tunneling Junctions Formed by Self‐Assembly , 2014 .

[49]  Symmetry-selective third-harmonic generation from plasmonic metacrystals. , 2014, Physical review letters.

[50]  Y. Selzer,et al.  Spectroscopy of molecular junctions. , 2011, Chemical Society reviews.

[51]  M. Bennett,et al.  Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length , 2022 .

[52]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[53]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[54]  S. Mukherjee,et al.  An electrically excited nanoscale light source with active angular control of the emitted light. , 2013, Nano letters.

[55]  Riccardo Frisenda,et al.  Large negative differential conductance in single-molecule break junctions. , 2014, Nature nanotechnology.

[56]  J. Lambe,et al.  Light Emission from Inelastic Electron Tunneling , 1976 .

[57]  Lukas Novotny,et al.  Electrical excitation of surface plasmons. , 2011, Physical review letters.

[58]  David Cahen,et al.  Comparison of Electronic Transport Measurements on Organic Molecules , 2003 .

[59]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[60]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[61]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[62]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[63]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[64]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[65]  E. Barco,et al.  Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet , 2008 .

[66]  Johansson,et al.  Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. , 1991, Physical review letters.

[67]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[68]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[69]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[70]  Peter W. Wenner Peter , 2015, Leaving.

[71]  Mark L Brongersma,et al.  Surface plasmon polariton analogue to Young's double-slit experiment. , 2007, Nature nanotechnology.

[72]  Jurriaan Schmitz,et al.  A silicon-based electrical source of surface plasmon polaritons. , 2010, Nature materials.

[73]  R. McCreery,et al.  Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions , 2013, Proceedings of the National Academy of Sciences.

[74]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[75]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[76]  Hoon Cha,et al.  Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. , 2014, ACS nano.

[77]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[78]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[79]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[80]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[81]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[82]  P. Nordlander,et al.  Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. , 2015, ACS nano.

[83]  Reinier W Heeres,et al.  On-chip single plasmon detection. , 2010, Nano letters.

[84]  L. Liz‐Marzán,et al.  Controlled assembly of plasmonic colloidal nanoparticle clusters. , 2011, Nanoscale.

[85]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[86]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[87]  E. Beaurepaire,et al.  Giant magnetoresistance through a single molecule. , 2011, Nature nanotechnology.

[88]  G. Whitesides,et al.  Comparison of SAM-Based Junctions with Ga2O3/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions , 2012 .

[89]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[90]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[91]  Alexandre Bouhelier,et al.  Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas. , 2015, Nano letters.

[92]  Mark A. Ratner,et al.  Molecular transport junctions: vibrational effects , 2006 .

[93]  Damien Thompson,et al.  The role of van der Waals forces in the performance of molecular diodes. , 2013, Nature nanotechnology.

[94]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[95]  M. Sheves,et al.  Solid-state electron transport across azurin: from a temperature-independent to a temperature-activated mechanism. , 2011, Journal of the American Chemical Society.

[96]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[97]  Marcel Mayor,et al.  A single-molecule diode. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[99]  Yang Zhang,et al.  Excitation of propagating surface plasmons with a scanning tunnelling microscope , 2011, Nanotechnology.

[100]  Yuyuan Tian,et al.  Rectification and stability of a single molecular diode with controlled orientation. , 2009, Nature chemistry.

[101]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[102]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[103]  W. Schneider,et al.  Luminescence experiments on supported molecules with the scanning tunneling microscope , 2010 .

[104]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[105]  Liesbet Lagae,et al.  Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. , 2010, Nano letters.

[106]  M. Sheves,et al.  Electronic Transport via Proteins , 2014, Advanced materials.

[107]  R. Metzger Unimolecular electronics. , 2015, Chemical reviews.

[108]  Severin T. Schneebeli,et al.  Probing the conductance superposition law in single-molecule circuits with parallel paths , 2012, Nature Nanotechnology.

[109]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[110]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[111]  S. Kawata,et al.  Subwavelength colour imaging with a metallic nanolens , 2008 .

[112]  B. de Boer,et al.  Electrical conduction through single molecules and self-assembled monolayers , 2008 .

[113]  A. Nitzan,et al.  The electrostatic potential profile along a biased molecular wire: A model quantum-mechanical calculation , 2002, physics/0209091.

[114]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[115]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[116]  H. Rigneault,et al.  Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations , 2015 .

[117]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[118]  M. Brandbyge,et al.  Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction. , 2012, Physical review letters.

[119]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[120]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[121]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[122]  Paul G. Slade,et al.  Electrical contacts : principles and applications , 1999 .

[123]  Boubacar Kante,et al.  Predicting nonlinear properties of metamaterials from the linear response. , 2015, Nature materials.

[124]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[125]  F Javier García de Abajo,et al.  Surface plasmon dependence on the electron density profile at metal surfaces. , 2014, ACS nano.

[126]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[127]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[128]  A. Borisov,et al.  A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. , 2015, Faraday discussions.

[129]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[130]  Florian Schwarz,et al.  Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. , 2016, Nature nanotechnology.

[131]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[132]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[133]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[134]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[135]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[136]  Tao Wang,et al.  Edge scattering of surface plasmons excited by scanning tunneling microscopy. , 2013, Optics express.

[137]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[138]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[139]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[140]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[141]  M. Pileni,et al.  Coupled plasmon modes in an ordered hexagonal monolayer of metal nanoparticles: a direct observation. , 2000, Physical review letters.

[142]  T. Taubner,et al.  Graphene-enhanced infrared near-field microscopy. , 2014, Nano letters.

[143]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[144]  A. Nitzan,et al.  Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering. , 2014, Physical review letters.

[145]  G. Vancso,et al.  Dynamics of decanethiol self-assembled monolayers on Au(111) studied by time-resolved scanning tunneling microscopy. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[146]  B. Poelsema,et al.  Transport through a single octanethiol molecule. , 2009, Nano letters.

[147]  Vladimiro Mujica,et al.  Molecular wire conductance: Electrostatic potential spatial profile , 2000 .

[148]  S. Ushioda,et al.  SCANNING TUNNELING MICROSCOPE LIGHT EMISSION SPECTRA OF AU(110)-(2 X 1) WITH ATOMIC SPATIAL RESOLUTION , 1999 .

[149]  N. J. Tao,et al.  Electron transport in molecular junctions , 2006, Nature nanotechnology.

[150]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[151]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[152]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[153]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[154]  Y. Mairesse,et al.  Resolving the time when an electron exits a tunnelling barrier , 2012, Nature.

[155]  G. Nazin,et al.  Vibrationally Resolved Fluorescence Excited with Submolecular Precision , 2003, Science.

[156]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[157]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[158]  R. McCreery,et al.  A critical perspective on molecular electronic junctions: there is plenty of room in the middle. , 2013, Physical chemistry chemical physics : PCCP.

[159]  Tae-Wook Kim,et al.  Electrical transport characteristics through molecular layers , 2011 .

[160]  D. Koller,et al.  Organic plasmon-emitting diode , 2008 .

[161]  D. Mills,et al.  Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution. , 2010, Physical review letters.

[162]  A. Fisher,et al.  Tunable magnetoresistance in an asymmetrically coupled single-molecule junction. , 2015, Nature nanotechnology.

[163]  S. J. van der Molen,et al.  Observation of quantum interference in molecular charge transport. , 2011, Nature nanotechnology.

[164]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[165]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[166]  Guillaume Schull,et al.  Optical probe of quantum shot-noise reduction at a single-atom contact. , 2010, Physical review letters.

[167]  M. Brongersma,et al.  An electrically-driven GaAs nanowire surface plasmon source. , 2012, Nano letters.

[168]  J. Aizpurua,et al.  Role of tip shape in light emission from the scanning tunneling microscope , 2000 .

[169]  R. McCreery,et al.  Molecular Electronic Junctions , 2004 .

[170]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[171]  U. Hohenester Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation , 2015, 1505.03261.

[172]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[173]  A. Nitzan,et al.  Molecular optoelectronics: the interaction of molecular conduction junctions with light. , 2012, Physical chemistry chemical physics : PCCP.

[174]  R. McCreery,et al.  Direct optical determination of interfacial transport barriers in molecular tunnel junctions. , 2013, Journal of the American Chemical Society.

[175]  A. Bouhelier,et al.  Thermo-electric detection of waveguided surface plasmon propagation , 2011 .

[176]  Alok P. Vasudev,et al.  Electrically Controlled Nonlinear Generation of Light with Plasmonics , 2011, Science.

[177]  Mark Ratner,et al.  A brief history of molecular electronics. , 2013, Nature nanotechnology.

[178]  Tao Wang,et al.  Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope , 2015 .

[179]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[180]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[181]  Chung-Yuan Mou,et al.  Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. , 2009, Nano letters.

[182]  C. H. Patterson,et al.  Molecularly inherent voltage-controlled conductance switching , 2005, Nature materials.

[183]  J. Cuevas,et al.  Plasmon-Induced Conductance Enhancement in Single-Molecule Junctions , 2013 .

[184]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[185]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[186]  Hongxing Xu,et al.  Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics , 2014, Nature Communications.

[187]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[188]  Guillaume Schull,et al.  Imaging confined electrons with plasmonic light. , 2008, Physical review letters.

[189]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[190]  T. Taniguchi,et al.  Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. , 2015, Nature nanotechnology.

[191]  J. Hou,et al.  Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. , 2013, Journal of the American Chemical Society.

[192]  P. Johansson LIGHT EMISSION FROM A SCANNING TUNNELING MICROSCOPE : FULLY RETARDED CALCULATION , 1998, cond-mat/9809234.

[193]  Lin Wu,et al.  Fowler-nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[194]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[195]  J. Gimzewski,et al.  Photon emission experiments with the scanning tunnelling microscope , 1988 .

[196]  S. Lindsay,et al.  On the mechanism of negative differential resistance in ferrocenylundecanethiol self-assembled monolayers. , 2005, Journal of the American Chemical Society.

[197]  H. Haick,et al.  Contacting organic molecules by soft methods: towards molecule-based electronic devices. , 2008, Accounts of chemical research.

[198]  Bhavya Sharma,et al.  Molecular plasmonics for nanoscale spectroscopy. , 2014, Chemical Society reviews.

[199]  Lukas Novotny,et al.  Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor. , 2015, Nano letters.

[200]  R. Arielly,et al.  Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. , 2011, Nano letters.

[201]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[202]  J. Hou,et al.  Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111). , 2012, Optics express.

[203]  Frank Schramm,et al.  Molecular orbital gates for plasmon excitation. , 2013, Nano letters.

[204]  L. C. Davis Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions , 1977 .

[205]  G. Whitesides,et al.  Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions. , 2013, Journal of the American Chemical Society.

[206]  Bert Hecht,et al.  Electrically driven optical antennas , 2015 .

[207]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[208]  C. Gorman,et al.  Stochastic Variation in Conductance on the Nanometer Scale: A General Phenomenon , 2003 .