Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar and microwave radiometer data are systematically compared to models to quantify and improve their performance.

[1]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[2]  D. Donovan,et al.  Comparing ice cloud microphysical properties using CloudNET and Atmospheric Radiation Measurement Program data , 2004 .

[3]  Yu Gu,et al.  Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results , 2005 .

[4]  Nicolas Gaussiat,et al.  Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models , 2007 .

[5]  D. Randall,et al.  A Semiempirical Cloudiness Parameterization for Use in Climate Models , 1996 .

[6]  Véronique Ducrocq,et al.  Simulation of an Observed Squall Line with a Meso-Beta-Scale Hydrostatic Model , 1995 .

[7]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[8]  Identification of error sources in convective planetary boundary layer cloud forecasts using SIRTA observations , 2006 .

[9]  E. Eloranta Practical model for the calculation of multiply scattered lidar returns. , 1993, Applied optics.

[10]  R. Hogan,et al.  Parameterizing Ice Cloud Inhomogeneity and the Overlap of Inhomogeneities Using Cloud Radar Data , 2003 .

[11]  Philip J. Rasch,et al.  A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .

[12]  Susanne Crewell,et al.  Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET , 2005 .

[13]  D. Donovan Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements , 2003 .

[14]  Oleg A. Krasnov,et al.  A synergetic radar-lidar technique for the LWC retrieval in water clouds: Description and application to the Cloudnet data , 2005 .

[15]  A. Apituley,et al.  Ground-Based Remote Sensing of Stratocumulus Properties during CLARA, 1996 , 2000 .

[16]  A. Illingworth,et al.  Toward More Accurate Retrievals of Ice Water Content from Radar Measurements of Clouds , 2000 .

[17]  Gerald G. Mace,et al.  Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave radar data , 1998 .

[18]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[19]  S. Matrosov,et al.  Ground-Based Remote Sensing of Cloud Particle Sizes during the 26 November 1991 FIRE II Cirrus Case: Comparisons with In Situ Data , 1995 .

[20]  Alain Protat,et al.  The characterization of ice cloud properties from doppler radar measurements , 2007 .

[21]  Robin J. Hogan,et al.  Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar , 2005 .

[22]  U. Willén,et al.  Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the baltex bridge campaign of CLIWA-NET , 2005 .

[23]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[24]  Impact of conditional sampling and instrumental limitations on the statistics of cloud properties derived from cloud radar and lidar at SIRTA , 2006 .

[25]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[26]  A. Korolev,et al.  Ice particle habits in stratiform clouds , 2000 .

[27]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[28]  Jacques Pelon,et al.  The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy , 2005 .

[29]  B. Albrecht,et al.  Surface‐based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds , 1990 .

[30]  R. Hogan,et al.  The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model , 2006 .

[31]  E. O'connor,et al.  A Technique for Autocalibration of Cloud Lidar , 2004 .

[32]  R. Hogan,et al.  Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar , 2005 .

[33]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[34]  Robin J. Hogan,et al.  Deriving cloud overlap statistics from radar , 2000 .

[35]  A. Feijt,et al.  THE BALTEX BRIDGE CAMPAIGN: An Integrated Approach for a Better Understanding of Clouds , 2004 .

[36]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[37]  A. Illingworth,et al.  Absolute Calibration of 94/95-GHz Radars Using Rain , 2003 .

[38]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[39]  S. Bony,et al.  SIRTA, a ground-based atmospheric observatory for cloud and aerosol research , 2005 .

[40]  Gerald G. Mace,et al.  Cloud-Layer Overlap Characteristics Derived from Long-Term Cloud Radar Data , 2002 .

[41]  J. Royer,et al.  A statistical cloud scheme for use in an AGCM , 1993 .

[42]  R. Hogan,et al.  Deriving turbulent kinetic energy dissipation rate within clouds using ground based radar , 2004 .

[43]  Claire Tinel,et al.  Independent Evaluation of the Ability of Spaceborne Radar and Lidar to Retrieve the Microphysical and Radiative Properties of Ice Clouds , 2006 .

[44]  Robin J. Hogan,et al.  Comparison of ECMWF Winter-Season Cloud Fraction with Radar-Derived Values , 2001 .

[45]  Christian Jakob,et al.  An Improved Strategy for the Evaluation of Cloud Parameterizations in GCMS , 2003 .

[46]  J. W. F. Goddard,et al.  Technique for calibration of meteorological radars using differential phase , 1994 .

[47]  R. Hogan,et al.  Cloud effective particle size and water content profile retrievals using combined lidar and radar observations 2. Comparison with IR radiometer and in situ , 2001 .

[48]  E. O'connor,et al.  Characteristics of mixed‐phase clouds. II: A climatology from ground‐based lidar , 2003 .