Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations
暂无分享,去创建一个
Oleg A. Krasnov | Jacques Pelon | Martial Haeffelin | Alain Protat | D. P. Donovan | Herman Russchenberg | Axel Seifert | Nicolas Gaussiat | Robin J. Hogan | C. L. Wrench | Adrian M. Tompkins | Ulrika Willén | J. D. Eastment | Ewan J. O'Connor | Damian R. Wilson | Julien Delanoë | E. O'connor | R. Hogan | U. Willén | M. Haeffelin | D. Bouniol | J. Delanoë | J. Pelon | A. Protat | D. Donovan | A. Illingworth | M. Brooks | D. Wilson | G. V. Zadelhoff | A. Tompkins | H. Russchenberg | A. Seifert | J. Goddard | O. Krasnov | J. Piriou | J. Eastment | N. Gaussiat | Malcolm E. Brooks | H. Baltink | H. Klein Baltink | N. | J.W.F. Goddard | A. J. Illingworth | D. Bouniol | Jean-Marcel Piriou | G.-J. van Zadelhoff | F. Vinit | Illingworth | C. Wrench | F. | F. Vinit | V. Zadelhoff | Haeffelin | J. H.W. | Tompkins | M. | Klein Baltink | A. | J. | Willén | H. | D. | U. | Pelon | Goddard | Connor | J. A. | J. R. | Hogan | ’. E.J.O | Bouniol | E. M. | Brooks | Delanoë | P. D. | Donovan | D. J. | Eastment | Gaussiat | F. J.W. | A. O. | Krasnov | J.-M. | Piriou | Protat | Russchenberg | Seifert | M. A. | G.-J. | Vinit | R. D. | Wilson | ’. e.J.o | Brooks
[1] David M. Winker,et al. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.
[2] D. Donovan,et al. Comparing ice cloud microphysical properties using CloudNET and Atmospheric Radiation Measurement Program data , 2004 .
[3] Yu Gu,et al. Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results , 2005 .
[4] Nicolas Gaussiat,et al. Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models , 2007 .
[5] D. Randall,et al. A Semiempirical Cloudiness Parameterization for Use in Climate Models , 1996 .
[6] Véronique Ducrocq,et al. Simulation of an Observed Squall Line with a Meso-Beta-Scale Hydrostatic Model , 1995 .
[7] A. Tompkins. A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .
[8] Identification of error sources in convective planetary boundary layer cloud forecasts using SIRTA observations , 2006 .
[9] E. Eloranta. Practical model for the calculation of multiply scattered lidar returns. , 1993, Applied optics.
[10] R. Hogan,et al. Parameterizing Ice Cloud Inhomogeneity and the Overlap of Inhomogeneities Using Cloud Radar Data , 2003 .
[11] Philip J. Rasch,et al. A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .
[12] Susanne Crewell,et al. Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET , 2005 .
[13] D. Donovan. Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements , 2003 .
[14] Oleg A. Krasnov,et al. A synergetic radar-lidar technique for the LWC retrieval in water clouds: Description and application to the Cloudnet data , 2005 .
[15] A. Apituley,et al. Ground-Based Remote Sensing of Stratocumulus Properties during CLARA, 1996 , 2000 .
[16] A. Illingworth,et al. Toward More Accurate Retrievals of Ice Water Content from Radar Measurements of Clouds , 2000 .
[17] Gerald G. Mace,et al. Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave radar data , 1998 .
[18] Damian R. Wilson,et al. A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .
[19] S. Matrosov,et al. Ground-Based Remote Sensing of Cloud Particle Sizes during the 26 November 1991 FIRE II Cirrus Case: Comparisons with In Situ Data , 1995 .
[20] Alain Protat,et al. The characterization of ice cloud properties from doppler radar measurements , 2007 .
[21] Robin J. Hogan,et al. Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar , 2005 .
[22] U. Willén,et al. Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the baltex bridge campaign of CLIWA-NET , 2005 .
[23] Darren L. Jackson,et al. A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .
[25] S. Schwartz,et al. The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .
[26] A. Korolev,et al. Ice particle habits in stratiform clouds , 2000 .
[27] R. Smith. A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .
[28] Jacques Pelon,et al. The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy , 2005 .
[29] B. Albrecht,et al. Surface‐based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds , 1990 .
[30] R. Hogan,et al. The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model , 2006 .
[31] E. O'connor,et al. A Technique for Autocalibration of Cloud Lidar , 2004 .
[32] R. Hogan,et al. Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar , 2005 .
[33] E. O'connor,et al. The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .
[34] Robin J. Hogan,et al. Deriving cloud overlap statistics from radar , 2000 .
[35] A. Feijt,et al. THE BALTEX BRIDGE CAMPAIGN: An Integrated Approach for a Better Understanding of Clouds , 2004 .
[36] S. Bony,et al. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .
[37] A. Illingworth,et al. Absolute Calibration of 94/95-GHz Radars Using Rain , 2003 .
[38] W. Rossow,et al. ISCCP Cloud Data Products , 1991 .
[39] S. Bony,et al. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research , 2005 .
[40] Gerald G. Mace,et al. Cloud-Layer Overlap Characteristics Derived from Long-Term Cloud Radar Data , 2002 .
[41] J. Royer,et al. A statistical cloud scheme for use in an AGCM , 1993 .
[42] R. Hogan,et al. Deriving turbulent kinetic energy dissipation rate within clouds using ground based radar , 2004 .
[43] Claire Tinel,et al. Independent Evaluation of the Ability of Spaceborne Radar and Lidar to Retrieve the Microphysical and Radiative Properties of Ice Clouds , 2006 .
[44] Robin J. Hogan,et al. Comparison of ECMWF Winter-Season Cloud Fraction with Radar-Derived Values , 2001 .
[45] Christian Jakob,et al. An Improved Strategy for the Evaluation of Cloud Parameterizations in GCMS , 2003 .
[46] J. W. F. Goddard,et al. Technique for calibration of meteorological radars using differential phase , 1994 .
[47] R. Hogan,et al. Cloud effective particle size and water content profile retrievals using combined lidar and radar observations 2. Comparison with IR radiometer and in situ , 2001 .
[48] E. O'connor,et al. Characteristics of mixed‐phase clouds. II: A climatology from ground‐based lidar , 2003 .