Takagi–Sugeno Fuzzy Models in the Framework of Orthonormal Basis Functions
暂无分享,去创建一个
Ricardo J. G. B. Campello | Wagner Caradori do Amaral | Jeremias B. Machado | W. C. Amaral | J. B. Machado | R.J.G.B. Campello
[1] B. Wahlberg,et al. Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .
[2] Li-Xin Wang,et al. Universal approximation by hierarchical fuzzy systems , 1998, Fuzzy Sets Syst..
[3] Ricardo J. G. B. Campello,et al. Control of a bioprocess using orthonormal basis function fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).
[4] A. Gray,et al. A normalized digital filter structure , 1975 .
[5] Ricardo J. G. B. Campello,et al. An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: non-linear models , 2012, Int. J. Model. Identif. Control..
[6] S. R. Andrietta,et al. Optimum Design of a Continuous Fermentation Unit of an Industrial Plant for Alcohol Production , 1994 .
[7] Ricardo J. G. B. Campello,et al. An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models , 2011, Int. J. Model. Identif. Control..
[8] Ricardo J. G. B. Campello,et al. A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..
[9] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[10] W. C. Amaral,et al. Modelagem de sistemas não-lineares por base de funções ortonormais generalizadas com funções internas , 2011 .
[11] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[12] Raghu Krishnapuram,et al. Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..
[13] Uzay Kaymak,et al. Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.
[14] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[15] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .
[16] Uzay Kaymak,et al. Improved covariance estimation for Gustafson-Kessel clustering , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).
[17] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems , 1980 .
[18] V. J. Rayward-Smith,et al. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .
[19] Ricardo J. G. B. Campello,et al. Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).
[20] P. V. D. Hof,et al. System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[21] Guy A. Dumont,et al. Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .
[22] Bart Kosko,et al. Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.
[23] Honghai Liu,et al. Reliable Fuzzy Control for Active Suspension Systems With Actuator Delay and Fault , 2012, IEEE Transactions on Fuzzy Systems.
[24] Bo Wahlberg,et al. On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..
[25] U. Kaymak,et al. Compatible cluster merging for fuzzy modelling , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..
[26] L. Biegler,et al. Smoothing methods for complementarity problems in process engineering , 1999 .
[27] Bing Chen,et al. Robust Stability for Uncertain Delayed Fuzzy Hopfield Neural Networks With Markovian Jumping Parameters , 2009, IEEE Trans. Syst. Man Cybern. Part B.
[28] Michio Sugeno,et al. Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.
[29] Donald Gustafson,et al. Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[30] W.C. Amaral,et al. Hierarchical fuzzy relational models: linguistic interpretation and universal approximation , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).
[31] L X Wang,et al. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.
[32] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[33] P. Eykhoff. System Identification Parameter and State Estimation , 1974 .
[34] Richard J. Wallace. Determining the Basis for Performance Variations in CSP Heuristics , 2007 .
[35] Jozsef Bokor,et al. Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..
[36] James C. Bezdek,et al. Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.
[37] Ricardo J. G. B. Campello,et al. Design of OBF-TS Fuzzy Models Based on Multiple Clustering Validity Criteria , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).
[38] G.H.C. Oliveira,et al. Fuzzy models within orthonormal basis function framework , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).
[39] Ricardo J. G. B. Campello,et al. Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions , 2009, IEEE Transactions on Automatic Control.
[40] Wagner Caradori do Amaral,et al. Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..