Takagi–Sugeno Fuzzy Models in the Framework of Orthonormal Basis Functions

An approach to obtain Takagi-Sugeno (TS) fuzzy models of nonlinear dynamic systems using the framework of orthonormal basis functions (OBFs) is presented in this paper. This approach is based on an architecture in which local linear models with ladder-structured generalized OBFs (GOBFs) constitute the fuzzy rule consequents and the outputs of the corresponding GOBF filters are input variables for the rule antecedents. The resulting GOBF-TS model is characterized by having only real-valued parameters that do not depend on any user specification about particular types of functions to be used in the orthonormal basis. The fuzzy rules of the model are initially obtained by means of a well-known technique based on fuzzy clustering and least squares. Those rules are then simplified, and the model parameters (GOBF poles, GOBF expansion coefficients, and fuzzy membership functions) are subsequently adjusted by using a nonlinear optimization algorithm. The exact gradients of an error functional with respect to the parameters to be optimized are computed analytically. Those gradients provide exact search directions for the optimization process, which relies solely on input-output data measured from the system to be modeled. An example is presented to illustrate the performance of this approach in the modeling of a complex nonlinear dynamic system.

[1]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[2]  Li-Xin Wang,et al.  Universal approximation by hierarchical fuzzy systems , 1998, Fuzzy Sets Syst..

[3]  Ricardo J. G. B. Campello,et al.  Control of a bioprocess using orthonormal basis function fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[4]  A. Gray,et al.  A normalized digital filter structure , 1975 .

[5]  Ricardo J. G. B. Campello,et al.  An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part II: non-linear models , 2012, Int. J. Model. Identif. Control..

[6]  S. R. Andrietta,et al.  Optimum Design of a Continuous Fermentation Unit of an Industrial Plant for Alcohol Production , 1994 .

[7]  Ricardo J. G. B. Campello,et al.  An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models , 2011, Int. J. Model. Identif. Control..

[8]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..

[9]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[10]  W. C. Amaral,et al.  Modelagem de sistemas não-lineares por base de funções ortonormais generalizadas com funções internas , 2011 .

[11]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[12]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[13]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[14]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[15]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[16]  Uzay Kaymak,et al.  Improved covariance estimation for Gustafson-Kessel clustering , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[17]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[18]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[19]  Ricardo J. G. B. Campello,et al.  Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[20]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[22]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[23]  Honghai Liu,et al.  Reliable Fuzzy Control for Active Suspension Systems With Actuator Delay and Fault , 2012, IEEE Transactions on Fuzzy Systems.

[24]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[25]  U. Kaymak,et al.  Compatible cluster merging for fuzzy modelling , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[26]  L. Biegler,et al.  Smoothing methods for complementarity problems in process engineering , 1999 .

[27]  Bing Chen,et al.  Robust Stability for Uncertain Delayed Fuzzy Hopfield Neural Networks With Markovian Jumping Parameters , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[30]  W.C. Amaral,et al.  Hierarchical fuzzy relational models: linguistic interpretation and universal approximation , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[31]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[32]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[33]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[34]  Richard J. Wallace Determining the Basis for Performance Variations in CSP Heuristics , 2007 .

[35]  Jozsef Bokor,et al.  Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..

[36]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Ricardo J. G. B. Campello,et al.  Design of OBF-TS Fuzzy Models Based on Multiple Clustering Validity Criteria , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[38]  G.H.C. Oliveira,et al.  Fuzzy models within orthonormal basis function framework , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[39]  Ricardo J. G. B. Campello,et al.  Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions , 2009, IEEE Transactions on Automatic Control.

[40]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..