The chemistry of the mechanical bond.
暂无分享,去创建一个
[1] J. F. Stoddart,et al. Thither supramolecular chemistry? , 2009, Nature chemistry.
[2] C. Peinador,et al. A new doubly interlocked [2]catenane. , 2009, Journal of the American Chemical Society.
[3] J. Fraser Stoddart,et al. Big and little Meccano , 2008 .
[4] J. F. Stoddart,et al. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.
[5] J. F. Stoddart,et al. Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes , 2008 .
[6] J Fraser Stoddart,et al. Template-directed synthesis employing reversible imine bond formation. , 2007, Chemical Society reviews.
[7] Cari D. Pentecost,et al. Making Molecular Borromean Rings. A Gram-Scale Synthetic Procedure for the Undergraduate Organic Lab. , 2007 .
[8] J. F. Stoddart,et al. Efficient Routes to Novel Molecular Architectures: Template-Directed Synthesis of Mechanically Interlocked Suitanes , 2007 .
[9] Francesco Zerbetto,et al. Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.
[10] Gareth W. V. Cave,et al. A molecular solomon link. , 2007, Angewandte Chemie.
[11] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[12] J. F. Stoddart,et al. Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.
[13] J. F. Stoddart,et al. Template-directed one-step synthesis of cyclic trimers by ADMET. , 2006, Journal of the American Chemical Society.
[14] J. F. Stoddart,et al. Template-directed synthesis of mechanically interlocked molecular bundles using dynamic covalent chemistry. , 2006, Organic letters.
[15] Hsian-Rong Tseng,et al. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. , 2006, The journal of physical chemistry. B.
[16] J. Fraser Stoddart,et al. Towards a rational design of molecular switches and sensors from their basic building blocks , 2005 .
[17] Hsian-Rong Tseng,et al. A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[18] J. F. Stoddart,et al. Dynamic nanoscale Borromean links. , 2005, Chemical communications.
[19] J. F. Stoddart,et al. Nanoscale Borromean links for real. , 2005, Chemical communications.
[20] Yun Hee Jang,et al. First-principles study of the switching mechanism of [2]catenane molecular electronic devices. , 2005, Physical review letters.
[21] W. Nazarewicz,et al. Shape coexistence and triaxiality in the superheavy nuclei , 2005, Nature.
[22] J. F. Stoddart. From a Meccano set to nano meccano , 2005 .
[23] J. F. Stoddart,et al. The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.
[24] James R Heath,et al. Whence Molecular Electronics? , 2004, Science.
[25] Chih-Ming Ho,et al. Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates , 2004 .
[26] J. Siegel. Chemical Topology and Interlocking Molecules , 2004, Science.
[27] Gareth W. V. Cave,et al. Molecular Borromean Rings , 2004, Science.
[28] William A. Goddard,et al. Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .
[29] Hsian-Rong Tseng,et al. An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.
[30] Xiang Zhang,et al. The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.
[31] Vincenzo Balzani,et al. Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.
[32] Hsian-Rong Tseng,et al. Single-walled carbon nanotube based molecular switch tunnel junctions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.
[33] J. Siegel,et al. Synthetic approaches to a molecular Borromean link: two-ring threading with polypyridine templates. , 2003, Angewandte Chemie.
[34] Michael O'Keeffe,et al. Reticular synthesis and the design of new materials , 2003, Nature.
[35] M. Blanco,et al. Transition‐Metal‐Templated Synthesis of Rotaxanes , 2003 .
[36] Tohru Yamamoto,et al. Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.
[37] Stuart J Rowan,et al. Dynamic covalent chemistry. , 2002, Angewandte Chemie.
[38] Hsian-Rong Tseng,et al. Chemical synthesis gets a fillip from molecular recognition and self-assembly processes , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[39] David J. Williams,et al. A ring-in-ring complex. , 2002, Angewandte Chemie.
[40] J Fraser Stoddart,et al. Working Supramolecular Machines Trapped in Glass and Mounted on a Film Surface. , 2001, Angewandte Chemie.
[41] Stoddart,et al. Artificial Molecular Machines. , 2000, Angewandte Chemie.
[42] J. F. Stoddart,et al. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .
[43] Masahiro Higuchi,et al. Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .
[44] Stoddart,et al. Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.
[45] Christopher L. Brown,et al. Introduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials , 2000 .
[46] G. Whitesides,et al. Complexity in chemistry. , 1999, Science.
[47] Vincenzo Balzani,et al. A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.
[48] David J. Williams,et al. The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .
[49] J. Fraser Stoddart,et al. SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .
[50] J. Fraser Stoddart,et al. The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .
[51] J. Fraser Stoddart,et al. The genesis of a new range of interlocked molecules , 1996 .
[52] Douglas Philp,et al. Self‐Assembly in Natural and Unnatural Systems , 1996 .
[53] J. F. Stoddart,et al. Interlocked and Intertwined Structures and Superstructures , 1996 .
[54] Douglas Philp,et al. A Photochemically Driven Molecular Machine , 1993 .
[55] Harry L. Anderson,et al. Expanding roles for templates in synthesis , 1993 .
[56] J Fraser Stoddart,et al. A molecular shuttle. , 1991, Journal of the American Chemical Society.
[57] D. H. Busch,et al. Molecular organization, portal to supramolecular chemistry: Structural analysis of the factors associated with molecular organization in coordination and inclusion chemistry, including the coordination template effect , 1990 .
[58] David J. Williams,et al. A [2] Catenane Made to Order , 1989 .
[59] David J. Williams,et al. Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .
[60] David J. Williams,et al. Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .
[61] Hans Fritz,et al. Synthese von [2]‐Catenanen aus [2]‐Rotaxanen , 1988 .
[62] Jean-Pierre Sauvage,et al. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .
[63] H. Ogino,et al. Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .
[64] Jean-Pierre Sauvage,et al. Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .
[65] W. Vetter,et al. [2]-[Cyclohexatetraoctane][cyclooctacosane]catenane, the First Hydrocarbon Catenane†‡ , 1983 .
[66] H. Ogino. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .
[67] Hans Fritz,et al. Untersuchungen zur Synthese von Molekülen mit Knotenstruktur Vierfach überbrückte 5, 6‐Diamino‐1, 3‐benzodioxol‐Derivate , 1979 .
[68] C. Zuercher,et al. [3]-Catenane durch gezielte Synthese , 1977 .
[69] A. Zilkha,et al. Synthesis of a catenane by a statistical double-stage method , 1976 .
[70] D. Graiver,et al. Studies on the formation of topological isomers by statistical methods , 1976 .
[71] I. Harrison. Preparation of rotaxanes by the statistical method , 1974 .
[72] Ian Thomas. Harrison,et al. Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .
[73] Gottfried Schill,et al. The Preparation of Catena Compounds by Directed Synthesis , 1964 .
[74] E. Wasserman,et al. THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .
[75] H. Prinzbach,et al. Cyclisationen Von Langkettigen Dithiolen. Versuche zur Darstellung sich umfassender Ringe mit Hilfe von Einschlußverbindungen , 1958 .
[76] H. Mark,et al. Zur Struktur der Polysiloxene. I , 1953 .
[77] Monty Liong,et al. Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery. , 2009, Journal of the American Ceramic Society. American Ceramic Society.
[78] Ke Xu,et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. , 2005, Chemistry.
[79] J Fraser Stoddart,et al. Nanoscale borromean rings. , 2005, Accounts of chemical research.
[80] Daryle H. Busch,et al. First Considerations: Principles, Classification, and History , 2005 .
[81] R. Stanley Williams,et al. Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .
[82] J. F. Stoddart,et al. A chemically and electrochemically switchable molecular shuttle , 1994, Nature.
[83] Jean-Marie Lehn,et al. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .
[84] David J. Williams,et al. Complexation of Diquat by a bisparaphenylene-34-crown-10 derivative , 1987 .
[85] Jean-Pierre Sauvage,et al. Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .
[86] Jean-Pierre Sauvage,et al. Une nouvelle famille de molecules : les metallo-catenanes , 1983 .
[87] I. Harrison. The effect of ring size on threading reactions of macrocycles , 1972 .
[88] G. Schill,et al. Die gezielte synthese von catena-verbindungen—IX , 1967 .