The chemistry of the mechanical bond.

The use of templation in the synthesis of unnatural products where two or more components are mechanically interlocked has not only raised the efficiency of their production to near quantitative levels in some instances, but the molecular recognition that aids and abets the templation is also part and parcel of the molecules after they have been prepared, purified and presented for investigation. The fact that the molecular recognition 'lives on' in mechanically interlocked molecules, following their templated formation, makes them prime candidates for applications that straddle the scientific and technical worlds from devices that could spawn new information technologies to integrated systems that could have fundamental applications in the health-care industries. The challenge to make more and more sophisticated compounds is predicated upon our fundamental understanding of the nature of the mechanical bond and how this associated knowledge base can be employed to do complex systems chemistry in very different environments where emergent phenomena become the order of the day (critical review, 104 references).

[1]  J. F. Stoddart,et al.  Thither supramolecular chemistry? , 2009, Nature chemistry.

[2]  C. Peinador,et al.  A new doubly interlocked [2]catenane. , 2009, Journal of the American Chemical Society.

[3]  J. Fraser Stoddart,et al.  Big and little Meccano , 2008 .

[4]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[5]  J. F. Stoddart,et al.  Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes , 2008 .

[6]  J Fraser Stoddart,et al.  Template-directed synthesis employing reversible imine bond formation. , 2007, Chemical Society reviews.

[7]  Cari D. Pentecost,et al.  Making Molecular Borromean Rings. A Gram-Scale Synthetic Procedure for the Undergraduate Organic Lab. , 2007 .

[8]  J. F. Stoddart,et al.  Efficient Routes to Novel Molecular Architectures: Template-Directed Synthesis of Mechanically Interlocked Suitanes , 2007 .

[9]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[10]  Gareth W. V. Cave,et al.  A molecular solomon link. , 2007, Angewandte Chemie.

[11]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[12]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[13]  J. F. Stoddart,et al.  Template-directed one-step synthesis of cyclic trimers by ADMET. , 2006, Journal of the American Chemical Society.

[14]  J. F. Stoddart,et al.  Template-directed synthesis of mechanically interlocked molecular bundles using dynamic covalent chemistry. , 2006, Organic letters.

[15]  Hsian-Rong Tseng,et al.  Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. , 2006, The journal of physical chemistry. B.

[16]  J. Fraser Stoddart,et al.  Towards a rational design of molecular switches and sensors from their basic building blocks , 2005 .

[17]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. F. Stoddart,et al.  Dynamic nanoscale Borromean links. , 2005, Chemical communications.

[19]  J. F. Stoddart,et al.  Nanoscale Borromean links for real. , 2005, Chemical communications.

[20]  Yun Hee Jang,et al.  First-principles study of the switching mechanism of [2]catenane molecular electronic devices. , 2005, Physical review letters.

[21]  W. Nazarewicz,et al.  Shape coexistence and triaxiality in the superheavy nuclei , 2005, Nature.

[22]  J. F. Stoddart From a Meccano set to nano meccano , 2005 .

[23]  J. F. Stoddart,et al.  The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.

[24]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[25]  Chih-Ming Ho,et al.  Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates , 2004 .

[26]  J. Siegel Chemical Topology and Interlocking Molecules , 2004, Science.

[27]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[28]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[29]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[30]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Vincenzo Balzani,et al.  Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.

[32]  Hsian-Rong Tseng,et al.  Single-walled carbon nanotube based molecular switch tunnel junctions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  J. Siegel,et al.  Synthetic approaches to a molecular Borromean link: two-ring threading with polypyridine templates. , 2003, Angewandte Chemie.

[34]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[35]  M. Blanco,et al.  Transition‐Metal‐Templated Synthesis of Rotaxanes , 2003 .

[36]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[38]  Hsian-Rong Tseng,et al.  Chemical synthesis gets a fillip from molecular recognition and self-assembly processes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  David J. Williams,et al.  A ring-in-ring complex. , 2002, Angewandte Chemie.

[40]  J Fraser Stoddart,et al.  Working Supramolecular Machines Trapped in Glass and Mounted on a Film Surface. , 2001, Angewandte Chemie.

[41]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[42]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[43]  Masahiro Higuchi,et al.  Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .

[44]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[45]  Christopher L. Brown,et al.  Introduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials , 2000 .

[46]  G. Whitesides,et al.  Complexity in chemistry. , 1999, Science.

[47]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[48]  David J. Williams,et al.  The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .

[49]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[50]  J. Fraser Stoddart,et al.  The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .

[51]  J. Fraser Stoddart,et al.  The genesis of a new range of interlocked molecules , 1996 .

[52]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[53]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[54]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[55]  Harry L. Anderson,et al.  Expanding roles for templates in synthesis , 1993 .

[56]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[57]  D. H. Busch,et al.  Molecular organization, portal to supramolecular chemistry: Structural analysis of the factors associated with molecular organization in coordination and inclusion chemistry, including the coordination template effect , 1990 .

[58]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[59]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[60]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[61]  Hans Fritz,et al.  Synthese von [2]‐Catenanen aus [2]‐Rotaxanen , 1988 .

[62]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[63]  H. Ogino,et al.  Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .

[64]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[65]  W. Vetter,et al.  [2]-[Cyclohexatetraoctane][cyclooctacosane]catenane, the First Hydrocarbon Catenane†‡ , 1983 .

[66]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[67]  Hans Fritz,et al.  Untersuchungen zur Synthese von Molekülen mit Knotenstruktur Vierfach überbrückte 5, 6‐Diamino‐1, 3‐benzodioxol‐Derivate , 1979 .

[68]  C. Zuercher,et al.  [3]-Catenane durch gezielte Synthese , 1977 .

[69]  A. Zilkha,et al.  Synthesis of a catenane by a statistical double-stage method , 1976 .

[70]  D. Graiver,et al.  Studies on the formation of topological isomers by statistical methods , 1976 .

[71]  I. Harrison Preparation of rotaxanes by the statistical method , 1974 .

[72]  Ian Thomas. Harrison,et al.  Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .

[73]  Gottfried Schill,et al.  The Preparation of Catena Compounds by Directed Synthesis , 1964 .

[74]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .

[75]  H. Prinzbach,et al.  Cyclisationen Von Langkettigen Dithiolen. Versuche zur Darstellung sich umfassender Ringe mit Hilfe von Einschlußverbindungen , 1958 .

[76]  H. Mark,et al.  Zur Struktur der Polysiloxene. I , 1953 .

[77]  Monty Liong,et al.  Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery. , 2009, Journal of the American Ceramic Society. American Ceramic Society.

[78]  Ke Xu,et al.  Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. , 2005, Chemistry.

[79]  J Fraser Stoddart,et al.  Nanoscale borromean rings. , 2005, Accounts of chemical research.

[80]  Daryle H. Busch,et al.  First Considerations: Principles, Classification, and History , 2005 .

[81]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[82]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[83]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[84]  David J. Williams,et al.  Complexation of Diquat by a bisparaphenylene-34-crown-10 derivative , 1987 .

[85]  Jean-Pierre Sauvage,et al.  Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .

[86]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[87]  I. Harrison The effect of ring size on threading reactions of macrocycles , 1972 .

[88]  G. Schill,et al.  Die gezielte synthese von catena-verbindungen—IX , 1967 .