Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050

Abstract Innovative technologies and strategies to decarbonize electricity generation, transport, and heat supply sector are key factors to achieve the global climate targets set by international organizations. One of these strategies implies a significant increase of the share of renewable electricity in the energy mix. Given the intermittent behaviour of renewable energy sources (RES), a detailed assessment of future energy scenarios is required to estimate the potential surplus in electricity production. To facilitate the penetration of renewable energy sources up to significant shares, massive long-term electricity storage technologies must be considered. Among these technologies, power-to-gas (PtG) systems may foster the fossil fuels switch by providing storage of surplus renewable electricity in the form of hydrogen or synthetic natural gas. Thus, this energy carrier could be reconverted to electrical power to cover peak demand periods. In this work, a study of the prospective Spanish scenario is presented and the potential of PtG technology is assessed in terms of expected renewable surplus. We found that the annual electricity surplus for 2050 might vary between 1.4 TWh and 13.5 TWh, and the required PtG capacity would be in the range 7.0–19.5 GW, depending on the renewable production pattern and the increment of demand.

[1]  F. Graf,et al.  Renewable Power-to-Gas: A technological and economic review , 2016 .

[2]  Carine Staropoli,et al.  Coordinating cross-border congestion management through auctions: An experimental approach to European solutions , 2006 .

[3]  Michele Ferrari,et al.  Power to liquid and power to gas: An option for the German Energiewende , 2015 .

[4]  José Román Wilhelmi Ayza El papel de la hidroelectricidad en el contexto de las energías renovables en España , 2013 .

[5]  Jihong Wang,et al.  Overview of current development in electrical energy storage technologies and the application potential in power system operation , 2015 .

[6]  Luis M. Romeo,et al.  Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2 , 2017 .

[7]  Eva Blasco Hedo Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos. (BOE núm. 140, de 10 de junio de 2014) , 2014 .

[8]  Wolf-Peter Schill Residual load, renewable surplus generation and storage requirements in Germany , 2014 .

[9]  Detlef Stolten,et al.  Power to Gas: Technological Overview, Systems Analysis and Economic Assessment , 2015 .

[10]  Rainer Zah,et al.  Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains , 2014 .

[11]  Jianzhong Wu,et al.  Role of power-to-gas in an integrated gas and electricity system in Great Britain , 2015 .

[12]  G. P. Sánchez El trabajo industrial en la España contemporánea (1874-1936) , 1990 .

[13]  M. Jentsch,et al.  Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario , 2014 .

[14]  E. Kötter,et al.  The geographic potential of Power-to-Gas in a German model region - Trier-Amprion 5 , 2015 .

[15]  Francisco G. Montoya,et al.  Renewable energy production in Spain: A review , 2014 .

[16]  Johannes Lindorfer,et al.  Evaluating CO2 sources for power-to-gas applications – A case study for Austria , 2015 .