Exact analysis of nonlinear instability in a discrete Burgers' equation

Abstract A family of explicit nonlinear numerical schemes for Burgers' equation is derived by means of a discrete version of the Hopf-Cole transformation. Exact nonlinear stability conditions for these schemes are then found, and for one particular scheme the exact stability criteria are compared to the conventional linearized stability condition.

[1]  J. M. Sanz-Serna,et al.  Studies in Numerical Nonlinear Instability I. Why do Leapfrog Schemes Go Unstable , 1985 .

[2]  Michael B. Giles,et al.  Propagation and stability of wavelike solutions of finite difference equations with variable coefficients , 1985 .

[3]  P. L. Sachdev A generalised cole-hopf transformation for nonlinear parabolic and hyperbolic equations , 1978 .

[4]  J. Ll. Morris,et al.  A Hopscotch method for the Korteweg-de-Vries equation , 1976 .

[5]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[6]  Studies in numerical nonlinear instability. II. A new look at u t + uu x = 0 , 1986 .

[7]  Quantum phenomena in numerical wave propagation , 1989 .

[8]  L. Trefethen Instability of difference models for hyperbolic initial boundary value problems , 1984 .

[9]  D. M. Sloan On modulational instabilities in discretisations of the Korteweg-deVries equation , 1988 .

[10]  B. Herbst,et al.  Grid resonances, focusing, and Benjamin-Feir instabilities in leapfrog time discretizations , 1988 .

[11]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[12]  Bengt Fornberg,et al.  On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation , 1973 .

[13]  D. Levi,et al.  Continuous and discrete matrix Burgers’ hierarchies , 1983 .

[14]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[15]  R. M. Meyer Finite Differences and Difference Equations , 1979 .

[16]  J. Sanz-Serna,et al.  Convergence of Methods for the Numerical Solution of the Korteweg—de Vries Equation , 1981 .

[17]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[18]  L. Trefethen Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström , 1983 .

[19]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[20]  J. Teichmann,et al.  On the generalization of the Cole-Hopf transformation , 1979 .

[21]  William L. Briggs,et al.  Focusing: A mechanism for instability of nonlinear finite difference equations , 1983 .

[22]  D. M. Sloan,et al.  On nonlinear instabilities in leap-frog finite difference schemes , 1986 .

[23]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[24]  A generalization to higher-order Hopf-Cole type of transformations , 1990 .