Modularity in term rewriting revisited

We revisit modularity in term rewriting which for the last 25 years has been a very active and fruitful research field. Starting with the pioneering works of Yoshihito Toyama on the modularity of confluence and the non-modularity of termination he thus initiated an extremely productive line of research, with many non-trivial and deep results, striking counterexamples and a substantial amount of systematic theoretical foundations, methodological principles and novel proof techniques. In this focused summary we will revisit the modularity analysis for ordinary term rewriting systems, considering various confluence and termination properties and restricting ourselves mainly to the case of disjoint unions. We will summarize known results on the (non-)modularity of various confluence and termination properties, and exhibit crucial ideas, constructions and phenomena. Later on we will also briefly consider various extensions, applications, related questions and open problems, as well as recent developments.

[1]  Jakob Grue Simonsen,et al.  Higher-Order (Non-)Modularity , 2010, RTA.

[2]  Detlef Plump,et al.  Collapsed Tree Rewriting: Completeness, Confluence, and Modularity , 1992, CTRS.

[3]  Massimo Marchiori The Theory of Vaccines , 1997, ICALP.

[4]  Michaël Rusinowitch,et al.  On Termination of the Direct Sum of Term-Rewriting Systems , 1987, Inf. Process. Lett..

[5]  Bernhard Gramlich,et al.  Sufficient Conditions for Modular Termination of Conditional Term Rewriting Systems , 1992, CTRS.

[6]  M. R. K. Krishna Rao,et al.  Modularity of Termination in Term Graph Rewriting , 1996, RTA.

[7]  Aart Middeldorp Completeness of Combinations of Conditional Constructor Systems , 1994, J. Symb. Comput..

[8]  Enno Ohlebusch,et al.  Hierarchical termination revisited , 2002, Inf. Process. Lett..

[9]  Vincent van Oostrom Modularity of Confluence , 2008, IJCAR.

[10]  Aart Middeldorp,et al.  Modular Properties of Conditional Term Rewriting Systems , 1993, Inf. Comput..

[11]  Jaco van de Pol,et al.  Modularity in many-sorted term rewriting systems , 1992 .

[12]  Bernhard Gramlich,et al.  Abstract Relations between Restricted Termination and Confluence Properties of Rewrite Systems , 1995, Fundam. Informaticae.

[13]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[14]  Yoshihito Toyama,et al.  Persistency of Confluence , 1997, J. Univers. Comput. Sci..

[15]  Jakob Grue Simonsen,et al.  On the Modularity of Confluence in Infinitary Term Rewriting , 2004, RTA.

[16]  Salvador Lucas Lazy Rewriting and Context-Sensitive Rewriting , 2002, Electron. Notes Theor. Comput. Sci..

[17]  Jean-Pierre Jouannaud Modular Church-Rosser Modulo , 2006, RTA.

[18]  外山 芳人,et al.  Extending persistency of confluence with ordered sorts , 1996 .

[19]  E. Ohlebusch On the Modularity of Confluence of Constructor-Sharing Term Rewriting Systems , 1994, CAAP.

[20]  Bernhard Gramlich,et al.  Generalized sufficient conditions for modular termination of rewriting , 1992, Applicable Algebra in Engineering, Communication and Computing.

[21]  Jürgen Giesl,et al.  Automatic Termination Proofs in the Dependency Pair Framework , 2006, IJCAR.

[22]  Vincent van Oostrom Confluence by Decreasing Diagrams , 2008, RTA.

[23]  Aart Middeldorp,et al.  A sufficient condition for the termination of the direct sum of term rewriting systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[24]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[25]  Enno Ohlebusch,et al.  On the Modularity of Termination of Term Rewriting Systems , 1994, Theor. Comput. Sci..

[26]  Enno Ohlebusch,et al.  Advanced Topics in Term Rewriting , 2002, Springer New York.

[27]  Nachum Dershowitz Innocuous Constructor-Sharing Combinations , 1997, RTA.

[28]  Hans Zantema,et al.  Simple Termination of Rewrite Systems , 1997, Theor. Comput. Sci..

[29]  Takahito Aoto Solution to the Problem of Zantema on a Persistent Property of Term Rewriting Systems , 2001, J. Funct. Log. Program..

[30]  Massimo Marchiori,et al.  Modular Termination of r-Consistent and Left-Linear Term Rewriting Systems , 1995, Theor. Comput. Sci..

[31]  Bernhard Gramlich,et al.  Modular aspects of rewrite-based specifications , 1997, WADT.

[32]  M. R. K. Krishna Rao Simple Termination of Hierarchical Combinations of Term Rewriting Systems , 1994, TACS.

[33]  Salvador Lucas,et al.  Simple termination of context-sensitive rewriting , 2002, RULE '02.

[34]  Yoshiharu Kojima,et al.  Innermost Reachability and Context Sensitive Reachability Properties Are Decidable for Linear Right-Shallow Term Rewriting Systems , 2008, RTA.

[35]  Yoshihito Toyama,et al.  A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems , 2012, Log. Methods Comput. Sci..

[36]  Aart Middeldorp,et al.  On the Modularity of Deciding Call-by-Need , 2001, FoSSaCS.

[37]  M. R. K. Krishna Rao Semi-Completeness of Hierarchical and Super-Hierarchical Combinations of Term Rewriting Systems , 1995, TAPSOFT.

[38]  Yoshihito Toyama,et al.  Decidability for Left-Linaer Growing Term Rewriting Systems , 1999, RTA.

[39]  Hendrik Pieter Barendregt,et al.  Termination for direct sums of left-linear complete term rewriting systems , 1995, JACM.

[40]  Enno Ohlebusch,et al.  Modular Properties of Composable Term Rewriting Systems , 1995, J. Symb. Comput..

[41]  Salvador Lucas,et al.  Context-sensitive Computations in Functional and Functional Logic Programs , 1998, J. Funct. Log. Program..

[42]  Jean-Pierre Jouannaud,et al.  Modular Church-Rosser Modulo: The Complete Picture , 2008, Int. J. Softw. Informatics.

[43]  M.R.K. Kr ishna Rao,et al.  Modular Proofs for Completeness of Hierarchical Term Rewriting Systems , 1995, Theor. Comput. Sci..

[44]  Yoshihito Toyama,et al.  Modularity of Confluence: A Simplified Proof , 1994, Inf. Process. Lett..

[45]  Azuma Ohuchi,et al.  30周年記念論文 佳作:Modularity of Simple Termination of Term Rewriting Systems , 1990 .

[46]  Christoph Lüth Compositional Term Rewriting: An Algebraic Proof of Toyama's Theorem , 1996, RTA.

[47]  Masahito Kurihara,et al.  Modular Term Rewriting Systems and the Termination , 1990, Inf. Process. Lett..

[48]  Massimo Marchiori Modularity of Completeness Revisited , 1995, RTA.

[49]  Nachum Dershowitz,et al.  Commutation, Transformation, and Termination , 1986, CADE.

[50]  Detlef Plump,et al.  Implementing Term Rewriting by Graph Reduction: Termination of Combined Systems , 1990, CTRS.

[51]  Jakob Grue Simonsen,et al.  On modularity in infinitary term rewriting , 2006, Inf. Comput..

[52]  Salvador Lucas Context-sensitive rewriting strategies , 2002 .

[53]  Massimo Marchiori On the Modularity of Normal Forms in Rewriting , 1996, J. Symb. Comput..

[54]  Enno Ohlebusch,et al.  Modular Properties of Constructor-Sharing Conditional Term Rewriting Systems , 1994, CTRS.

[55]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[56]  Bernhard Gramlich,et al.  Termination of Lazy Rewriting Revisited , 2008, WRS@RDP.

[57]  Hans Zantema,et al.  Termination of Term Rewriting: Interpretation and Type Elimination , 1994, J. Symb. Comput..

[58]  Yoshihito Toyama Confluent Term Rewriting Systems , 2005, RTA.

[59]  M. R. K. Krishna Rao Completeness of Hierarchical Combinations of term Rewriting Systems , 1993, FSTTCS.

[60]  Azuma Ohuchi,et al.  Modularity in Noncopying Term Rewriting , 1995, Theor. Comput. Sci..

[61]  Bernhard Gramlich On Proving Termination by Innermost Termination , 1996, RTA.

[62]  Jean-Claude Raoult,et al.  Operational and Semantic Equivalence Between Recursive Programs , 1980, JACM.

[63]  Aart Middeldorp Modular Aspects of Properties of Term Rewriting Systems Related to Normal Forms , 1989, RTA.

[64]  Wan Fokkink,et al.  Lazy rewriting on eager machinery , 2000, TOPL.

[65]  René Thiemann,et al.  Signature Extensions Preserve Termination - An Alternative Proof via Dependency Pairs , 2010, CSL.

[66]  Yoshihito Toyama,et al.  On the Church-Rosser property for the direct sum of term rewriting systems , 1984, JACM.

[67]  Enno Ohlebusch Termination is not Modular for Confluent Variable-Preserving Term Rewriting Systems , 1995, Inf. Process. Lett..

[68]  Vincent van Oostrom Random Descent , 2007, RTA.

[69]  Bernhard Gramlich,et al.  Extending Context-Sensitivity in Term Rewriting , 2010, WRS.

[70]  Bernhard Gramlich,et al.  On Termination and Confluence Properties of Disjoint and Constructor-Sharing Conditional Rewrite Systems , 1996, Theor. Comput. Sci..

[71]  M. Schmidt-Schauβ Unification in a combination of arbitrary disjoint equational theories , 1989 .

[72]  Salvador Lucas,et al.  Modular termination of context-sensitive rewriting , 2002, PPDP '02.

[73]  Enno Ohlebusch,et al.  Combinations of Simplifying Conditional Term Rewriting Systems , 1992, CTRS.

[74]  Harald Zankl,et al.  Modular Complexity Analysis via Relative Complexity , 2010, RTA.