High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing

Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2–3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.

[1]  Oliver Speck,et al.  The impact of physiological noise correction on fMRI at 7 T , 2011, NeuroImage.

[2]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[3]  Anders Kristoffersen,et al.  Estimating non‐gaussian diffusion model parameters in the presence of physiological noise and rician signal bias , 2012, Journal of magnetic resonance imaging : JMRI.

[4]  Raimo Sepponen,et al.  Quantification of mechanical vibration during diffusion tensor imaging at 3 T , 2006, NeuroImage.

[5]  Matteo Pavan,et al.  Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations , 2011, Magnetic resonance in medicine.

[6]  J. Helpern,et al.  Stroke Assessment With Diffusional Kurtosis Imaging , 2012, Stroke.

[7]  Jan Sijbers,et al.  Gliomas: diffusion kurtosis MR imaging in grading. , 2012, Radiology.

[8]  A. Lutti,et al.  A General Linear Relaxometry Model of R1 Using Imaging Data , 2014, Magnetic resonance in medicine.

[9]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Derek K. Jones,et al.  Motion correction and registration of high b‐value diffusion weighted images , 2012, Magnetic resonance in medicine.

[12]  Eric Achten,et al.  Optimal Experimental Design for Diffusion Kurtosis Imaging , 2010, IEEE Transactions on Medical Imaging.

[13]  O. Josephs,et al.  Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements , 2012, Magnetic resonance in medicine.

[14]  Ronald Schoenberg,et al.  Constrained Maximum Likelihood , 1997 .

[15]  C. Büchel,et al.  White matter asymmetry in the human brain: a diffusion tensor MRI study. , 2004, Cerebral cortex.

[16]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[17]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[18]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[19]  Volkmar Glauche,et al.  The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS , 2012, PloS one.

[20]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[21]  B. Ardekani,et al.  Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging , 2011, Magnetic resonance in medicine.

[22]  Peter Dechent,et al.  Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI , 2010, Magnetic resonance in medicine.

[23]  Qing X Yang,et al.  MRI and histological analysis of beta‐amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice , 2009, Journal of magnetic resonance imaging : JMRI.

[24]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[25]  Alexander Leemans,et al.  REKINDLE: Robust extraction of kurtosis INDices with linear estimation , 2015, Magnetic resonance in medicine.

[26]  Stefan Skare,et al.  A Model-Based Method for Retrospective Correction of Geometric Distortions in Diffusion-Weighted EPI , 2002, NeuroImage.

[27]  Tobias Warnecke,et al.  G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial , 2011, PloS one.

[28]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[29]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[30]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[31]  Nikolaus Weiskopf,et al.  Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS , 2014, NeuroImage.

[32]  Michael Deppe,et al.  Correcting eddy current and motion effects by affine whole‐brain registrations: Evaluation of three‐dimensional distortions and comparison with slicewise correction , 2010, Magnetic resonance in medicine.

[33]  Yi-Hsin Weng,et al.  Parkinson disease: diagnostic utility of diffusion kurtosis imaging. , 2011, Radiology.

[34]  Nikolaus Weiskopf,et al.  Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation , 2013, Front. Neurosci..

[35]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[36]  L Tugan Muftuler,et al.  Quantitative analysis of the efficacy of gradient table correction on improving the accuracy of fiber tractography , 2014, Magnetic resonance in medicine.

[37]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[38]  Robert Turner,et al.  Diffusion imaging in humans at 7T using readout‐segmented EPI and GRAPPA , 2010, Magnetic resonance in medicine.

[39]  Karl J. Friston,et al.  MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study , 2013, The Lancet Neurology.

[40]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[41]  Gareth J. Barker,et al.  Investigating Cervical Spinal Cord Structure Using Axial Diffusion Tensor Imaging , 2002, NeuroImage.

[42]  Alfred Anwander,et al.  Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS) , 2012, Medical Image Anal..

[43]  Nikolaus Weiskopf,et al.  Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER) , 2012, Magnetic resonance in medicine.

[44]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[45]  Anatol C. Kreitzer,et al.  Plasticity in gray and white: neuroimaging changes in brain structure during learning , 2012, Nature Neuroscience.

[46]  Derek K. Jones,et al.  Using the biophysical CHARMED model to elucidate the underpinnings of contrast in diffusional kurtosis analysis of diffusion-weighted MRI , 2011, Magnetic Resonance Materials in Physics, Biology and Medicine.

[47]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[48]  Matthew G. Kirschenbaum,et al.  Tracking the changes: Textual scholarship and the challenge of the born digital , 2012 .

[49]  Lawrence L. Wald,et al.  Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex , 2013, NeuroImage.

[50]  Karl J. Friston,et al.  Tracking Changes following Spinal Cord Injury : Insights from Neuroimaging , 2013 .

[51]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[52]  Josef Pfeuffer,et al.  High resolution single-shot diffusion weighted imaging with a combination of zoomed EPI and parallel imaging , 2009 .

[53]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[54]  Nikolaus Weiskopf,et al.  The effect of local perturbation fields on human DTI: Characterisation, measurement and correction , 2012, NeuroImage.

[55]  J. Finsterbusch,et al.  Double‐wave‐vector diffusion‐weighted imaging reveals microscopic diffusion anisotropy in the living human brain , 2013, Magnetic resonance in medicine.

[56]  P. Dechent,et al.  High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI , 2008, Magnetic resonance in medicine.

[57]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[58]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[59]  Thorsten Feiweier,et al.  Evaluation of a Modified Stejskal-Tanner Diffusion Encoding Scheme, Permitting a Marked Reduction in TE, in Diffusion-Weighted Imaging of Stroke Patients at 3 T , 2010, Investigative radiology.

[60]  J. Helpern,et al.  Monte Carlo study of a two‐compartment exchange model of diffusion , 2010, NMR in biomedicine.

[61]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[62]  Gabriel Möddel,et al.  Gelastic seizures: A case of lateral frontal lobe epilepsy and review of the literature , 2009, Epilepsy & Behavior.

[63]  Agnes Flöel,et al.  Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia , 2010, NeuroImage.

[64]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[65]  Massimo Filippi,et al.  Multiple sclerosis: new measures to monitor the disease , 2013, The Lancet Neurology.

[66]  Tobias Warnecke,et al.  A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects , 2010, Movement disorders : official journal of the Movement Disorder Society.

[67]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[68]  Brian Hansen,et al.  Experimentally and computationally fast method for estimation of a mean kurtosis , 2013, Magnetic resonance in medicine.

[69]  Richard S. Frackowiak,et al.  Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ) , 2011, NeuroImage.

[70]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[71]  Hae-Jeong Park,et al.  Distortion correction of high b-valued and high angular resolution diffusion images using iterative simulated images , 2011, NeuroImage.

[72]  Nikolaus Weiskopf,et al.  POAS4SPM: A Toolbox for SPM to Denoise Diffusion MRI Data , 2014, Neuroinformatics.

[73]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[74]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[75]  A. Leemans,et al.  Comprehensive framework for accurate diffusion MRI parameter estimation , 2013, Magnetic resonance in medicine.

[76]  Nikolaus Weiskopf,et al.  The impact of post-processing on spinal cord diffusion tensor imaging , 2013, NeuroImage.

[77]  K. Tabelow,et al.  Modeling the orientation distribution function by mixtures of angular central Gaussian distributions , 2012, Journal of Neuroscience Methods.

[78]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[79]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .