A novel method of signaling aptamer/protein binding for aptamer-based protein detection has been developed using a molecular light switch complex, [Ru(phen)2(dppz)]2+. The method takes advantage of the sensitive luminescence signal change of [Ru(phen)2(dppz)]2+ intercalating to the aptamer upon protein/aptamer binding. A 37-nt DNA aptamer against immunoglobulin E (IgE) was first tested as a model system. The luminescence of the [Ru(phen)2(dppz)]2+/IgE aptamer decreased with the increase of IgE. By monitoring the luminescence change, we were able to detect the binding events between the aptamer and IgE for IgE quantitation in homogeneous solutions as well as in serum. The assay was highly selective and sensitive with a detection limit of 100 pM for IgE. This new method is very simple and without the need for the covalent coupling of fluorophores to aptamers. The generalizability of the method was demonstrated by the direct detection of two other proteins, oncoprotein platelet derived growth factor-BB (PDGF-BB) using its DNA aptamer and alpha-thrombin using its RNA aptamer. This new approach is expected to promote the exploitation of aptamer-based biosensors for protein assays in biochemical and biomedical studies.