A Reproducing Kernel Hilbert Space Framework for ITL
暂无分享,去创建一个
Robert Jenssen | Jian-Wu Xu | Il Memming Park | Antonio R. C. Paiva | R. Jenssen | Jian-Wu Xu | A. Paiva
[1] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[2] B. Silverman,et al. Functional Data Analysis , 1997 .
[3] Gunnar Rätsch,et al. Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites , 2000, German Conference on Bioinformatics.
[4] Peter Dayan,et al. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .
[5] Daniel Richardson,et al. Linear Algebra for Time Series of Spikes , 2005, ESANN.
[6] Octavia I. Camps,et al. Weighted Parzen Windows for Pattern Classification , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[7] José Carlos Príncipe,et al. A Reproducing Kernel Hilbert Space Framework for Spike Train Signal Processing , 2009, Neural Computation.
[8] Gunnar Rätsch,et al. Predicting Time Series with Support Vector Machines , 1997, ICANN.
[9] Nello Cristianini,et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..
[10] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[11] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[12] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[13] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[14] J. Marron,et al. Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation , 1988 .
[15] Jan Beirlant,et al. The empirical distribution function and strong laws for functions of order statistics of uniform spacings , 1985 .
[16] Mark Girolami,et al. Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem , 2002, Neural Computation.
[17] Par N. Aronszajn. La théorie des noyaux reproduisants et ses applications Première Partie , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] László Györfi,et al. On the Nonparametric Estimation of the Entropy Functional , 1991 .
[19] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[20] Bernhard Schölkopf,et al. Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..
[21] Charles C. Taylor,et al. Kernel density classification and boosting: an L2 analysis , 2005, Stat. Comput..
[22] José Carlos Príncipe,et al. An Explicit Construction Of A Reproducing Gaussian Kernel Hilbert Space , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[23] E. Oja,et al. Independent Component Analysis , 2013 .
[24] Michael I. Jordan,et al. Kernel independent component analysis , 2003 .
[26] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[27] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[28] Robert Jenssen,et al. Some Equivalences between Kernel Methods and Information Theoretic Methods , 2006, J. VLSI Signal Process..
[29] Benjamin Schrauwen,et al. Linking non-binned spike train kernels to several existing spike train metrics , 2006, ESANN.