The bifurcated age–metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy

We use recently derived ages for 61 Milky Way (MW) globular clusters (GCs) to show that their age-metallicity relation (AMR) can be divided into two distinct, parallel sequences at [Fe/H] $\ga -1.8$. Approximately one-third of the clusters form an offset sequence that spans the full range in age ($\sim 10.5$--13 Gyr), but is more metal rich at a given age by $\sim 0.6$ dex in [Fe/H]. All but one of the clusters in the offset sequence show orbital properties that are consistent with membership in the MW disk. They are not simply the most metal-rich GCs, which have long been known to have disk-like kinematics, but they are the most metal-rich clusters at all ages. The slope of the mass-metallicity relation (MMR) for galaxies implies that the offset in metallicity of the two branches of the AMR corresponds to a mass decrement of 2 dex, suggesting host galaxy masses of $M_{*} \sim 10^{7-8} \msol$ for GCs that belong to the more metal-poor AMR. We suggest that the metal-rich branch of the AMR consists of clusters that formed in-situ in the disk, while the metal-poor GCs were formed in relatively low-mass (dwarf) galaxies and later accreted by the MW. The observed AMR of MW disk stars, and of the LMC, SMC and WLM dwarf galaxies are shown to be consistent with this interpretation, and the relative distribution of implied progenitor masses for the halo GC clusters is in excellent agreement with the MW subhalo mass function predicted by simulations. A notable implication of the bifurcated AMR, is that the identical mean ages and spread in ages, for the metal rich and metal poor GCs are difficult to reconcile with an in-situ formation for the latter population.

[1]  R. Carrera,et al.  THE CHEMICAL ENRICHMENT HISTORY OF THE SMALL MAGELLANIC CLOUD AND ITS GRADIENTS , 2008, 0806.4465.

[2]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[3]  C. Giocoli,et al.  Analytical approach to subhalo population in dark matter haloes , 2007, 0712.1476.

[4]  Homogeneous metallicities and radial velocities for Galactic globular clusters: First CaT metallicities for twenty clusters , 2012, 1202.1304.

[5]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[6]  VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy , 2006, astro-ph/0603315.

[7]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[8]  A. Weiss,et al.  Homogeneous age dating of 55 Galactic globular clusters. Clues to the Galaxy formation mechanisms , 2002 .

[9]  Kim A. Venn,et al.  THE COMPARATIVE CHEMICAL EVOLUTION OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM , 2013, 1302.1879.

[10]  Jaeil Cho,et al.  NONLINEAR COLOR–METALLICITY RELATIONS OF GLOBULAR CLUSTERS. III. ON THE DISCREPANCY IN METALLICITY BETWEEN GLOBULAR CLUSTER SYSTEMS AND THEIR PARENT ELLIPTICAL GALAXIES , 2011, 1109.5178.

[11]  H Germany,et al.  NGC 1866: a milestone for understanding the chemical evolution of stellar populations in the Large Magellanic Cloud★ , 2010, 1012.1476.

[12]  L. Casagrande,et al.  On the alleged duality of the Galactic halo , 2010, 1012.0842.

[13]  Ata Sarajedini,et al.  The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without Previous Hubble Space Telescope Photometry , 2006, astro-ph/0612598.

[14]  H. Morrison The local density of halo giants , 1993 .

[15]  V. Belokurov,et al.  The cold veil of the Milky Way stellar halo. , 2012, 1205.6203.

[16]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[17]  M. Irwin,et al.  STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY: FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM , 2009, 0904.0657.

[18]  D. VandenBerg Models for Old, Metal-Poor Stars with Enhanced α-Element Abundances. II. Their Implications for the Ages of the Galaxy’s Globular Clusters and Field Halo Stars , 2000 .

[19]  Duncan A. Forbes,et al.  On the origin of globular clusters in elliptical and cD galaxies , 1997 .

[20]  D. Zucker,et al.  High-Resolution CCD Spectra of Stars in Globular Clusters.IX.The , 1997 .

[21]  David W. Hogg,et al.  THE VERTICAL MOTIONS OF MONO-ABUNDANCE SUB-POPULATIONS IN THE MILKY WAY DISK , 2012, 1202.2819.

[22]  Doug Geisler,et al.  Elemental Abundances of Three Red Giants in Terzan 7, a Globular Cluster Associated with the Sagittarius Galaxy , 2004 .

[23]  A. Helmi,et al.  Assembly history and structure of galactic cold dark matter haloes , 2010, 1008.5114.

[24]  On the formation of globular cluster systems in a hierarchical Universe , 2002, astro-ph/0202191.

[25]  Jean P. Brodie,et al.  Extragalactic Globular Clusters and Galaxy Formation , 2006 .

[26]  L. Ferrarese,et al.  OPTICAL AND INFRARED PHOTOMETRY OF GLOBULAR CLUSTERS IN NGC 1399: EVIDENCE FOR COLOR–METALLICITY NONLINEARITY , 2012, 1201.1031.

[27]  Robert D. Gehrz,et al.  On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass , 2006, astro-ph/0605036.

[28]  Terrence M. Girard,et al.  Space Velocities of Globular Clusters. III. Cluster Orbits and Halo Substructure , 1999 .

[29]  J. Rhoads,et al.  FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Lyα EMITTING GALAXIES IN THE EARLY UNIVERSE , 2012, 1207.5151.

[30]  Metal-Poor Globular Clusters and Galaxy Formation , 2004, astro-ph/0403160.

[31]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[32]  Angela Bragaglia,et al.  Multiple populations in globular clusters , 2012, 1201.6526.

[33]  D. Forbes,et al.  A new method for estimating dark matter halo masses using globular cluster systems , 2008, 0809.5057.

[34]  W. V. Altena,et al.  Space Velocities of Southern Globular Clusters. IV. First Results for Inner Galaxy Clusters , 2002, astro-ph/0212279.

[35]  Judith Cohen,et al.  Palomar 12 as a Part of the Sagittarius Stream: The Evidence from Abundance Ratios , 2003, astro-ph/0311187.

[36]  G. Wallerstein,et al.  ARP 2 AND TERZAN 8: A DETAILED CHEMICAL ANALYSIS , 2008 .

[37]  F. Grundahl,et al.  Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members , 2010, Astronomy & Astrophysics.

[38]  F. Hartwick MERGER-INDUCED GLOBULAR CLUSTER FORMATION AND GALAXY EVOLUTION , 2008, 0810.2800.

[39]  E. Grebel,et al.  Accepted Version Preprint typeset using L ATEX style emulateapj v. 10/09/06 AGE DETERMINATION OF SIX INTERMEDIATE-AGE SMC STAR CLUSTERS WITH HST/ACS * , 2022 .

[40]  S. Bergh Young Globular Clusters and Dwarf Spheroidals , 1999, astro-ph/9910243.

[41]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[42]  Stephen E. Zepf,et al.  The Formation of Globular Clusters in Merging and Interacting Galaxies , 1992 .

[43]  Gepi,et al.  The ACS Virgo Cluster Survey. XV. The Formation Efficiencies of Globular Clusters in Early-Type Galaxies: The Effects of Mass and Environment , 2008, 0803.0330.

[44]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[45]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[46]  D. Herrera,et al.  Space Velocities of Southern Globular Clusters. V. A Low Galactic Latitude Sample , 2007, 0705.3438.

[47]  A. Kawamura,et al.  MOLECULAR CLOUDS TOWARD RCW49 AND WESTERLUND 2: EVIDENCE FOR CLUSTER FORMATION TRIGGERED BY CLOUD–CLOUD COLLISION , 2009, 0904.0286.

[48]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[49]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[50]  A. D. Mackey,et al.  The properties of Galactic globular cluster subsystems , 2005 .

[51]  A. Helmi,et al.  Not too big, not too small: the dark haloes of the dwarf spheroidals in the Milky Way , 2012, 1202.6061.

[52]  M. Irwin,et al.  Young accreted globular clusters in the outer halo of M31 , 2012, 1211.1103.

[53]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[54]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[55]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[56]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[57]  Dynamical friction for dark halo satellites: effects of tidal mass loss and growing host potential , 2004, astro-ph/0403564.

[58]  V. Smith,et al.  Chemical abundances in the old LMC globular cluster Hodge 11 , 2012 .

[59]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[60]  J. Strader,et al.  The SLUGGS Survey: kinematics for over 2500 globular clusters in 12 early-type galaxies , 2012, 1209.4351.

[61]  R. Leaman INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS , 2012, 1209.4648.

[62]  Extragalactic globular clusters: Old spectroscopic ages and new views on their formation , 2005, astro-ph/0506289.

[63]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[64]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[65]  S. Keller,et al.  THE GLOBULAR CLUSTER SYSTEM OF THE MILKY WAY: ACCRETION IN A COSMOLOGICAL CONTEXT , 2011, 1109.4414.

[66]  D. Forbes,et al.  Accreted versus in situ Milky Way globular clusters , 2010, 1001.4289.

[67]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[68]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[69]  R.F.G. Wyse,et al.  The merging history of the Milky Way , 1996 .

[70]  A. Helmi,et al.  Galactic stellar haloes in the CDM model , 2009, 0910.3211.

[71]  Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction , 1998, astro-ph/9811229.

[72]  D. Geisler,et al.  Ca ii TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. II. ABUNDANCES FOR A SAMPLE OF FIELD STARS , 2009, 0912.0682.

[73]  S. White,et al.  There's no place like home? Statistics of Milky Way-mass dark matter haloes , 2009, 0911.4484.

[74]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[75]  Garching,et al.  Na-O anticorrelation and HB - VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra , 2009, 0909.2941.

[76]  A. Dotter,et al.  GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE–METALLICITY RELATION , 2011, 1106.4307.

[77]  P. Côté,et al.  The Formation of Giant Elliptical Galaxies and Their Globular Cluster Systems , 1998, astro-ph/9804319.

[78]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[79]  R. Wyse,et al.  Element Ratios and the Formation of the Stellar Halo , 1998, astro-ph/9805144.

[80]  J. P. Huchra,et al.  Properties of Globular Cluster Systems in Nearby Early-Type Galaxies , 2001, astro-ph/0102374.

[81]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[82]  R. Carrera,et al.  THE CHEMICAL ENRICHMENT HISTORY OF THE LARGE MAGELLANIC CLOUD , 2007, 0710.3076.

[83]  Alexander L. Muratov,et al.  MODELING THE METALLICITY DISTRIBUTION OF GLOBULAR CLUSTERS , 2010, 1002.1325.

[84]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[85]  S. Majewski,et al.  ASSESSING THE MILKY WAY SATELLITES ASSOCIATED WITH THE SAGITTARIUS DWARF SPHEROIDAL GALAXY , 2010, 1005.5390.

[86]  R. Bernstein,et al.  GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES , 2011, 1104.3141.

[87]  M. Irwin,et al.  THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM , 2012, 1202.4474.

[88]  Galactic Globular Cluster Relative Ages , 1999, astro-ph/0503594.

[89]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[90]  D. York,et al.  THE CASE FOR THE DUAL HALO OF THE MILKY WAY , 2011, 1104.2513.

[91]  W. V. Altena,et al.  SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VII. NGC 6397, NGC 6626 (M28), AND NGC 6656 (M22) , 2013, 1305.7431.

[92]  S. Lucatello,et al.  The second and third parameters of the horizontal branch in globular clusters , 2010, 1004.3862.

[93]  E. Tolstoy,et al.  Spectroscopy of Red Giants in the Large Magellanic Cloud Bar: Abundances, Kinematics, and the Age-Metallicity Relation , 2004, astro-ph/0412389.

[94]  M. Irwin,et al.  A Comparison of Elemental Abundance Ratios in Globular Clusters, Field Stars, and Dwarf Spheroidal Galaxies , 2005, astro-ph/0506238.