PROPERTIES OF GALACTIC CIRRUS CLOUDS OBSERVED BY BOOMERanG

The physical properties of galactic cirrus emission are not well characterized. BOOMERanG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERanG 245 and 345 GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b ∼ −40°) where BOOMERanG performed its deepest integration, combining the BOOMERanG data with other available data sets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows us to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERanG and Wilkinson Microwave Anisotropy Probe in the frequency range 23–3000 GHz (13 mm–100 μm wavelength). We fit the measured spectral energy distributions with a combination of a gray body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7–20 K range and its emissivity spectral index is in the 1–5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data.

[1]  A. Melchiorri,et al.  SUBDEGREE SUNYAEV–ZEL'DOVICH SIGNAL FROM MULTIFREQUENCY BOOMERanG OBSERVATIONS , 2009, 0904.4313.

[2]  James J. Bock,et al.  BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg2 SUBMILLIMETER GALACTIC SURVEY IN VELA (ℓ ≈ 265°) , 2009, 0904.1207.

[3]  G. Helou,et al.  SERENDIPITY OBSERVATIONS OF FAR INFRARED CIRRUS EMISSION IN THE SPITZER INFRARED NEARBY GALAXIES SURVEY: ANALYSIS OF FAR-INFRARED CORRELATIONS , 2009, 0901.0792.

[4]  R. B. Barreiro,et al.  Component separation methods for the PLANCK mission , 2008, 0805.0269.

[5]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[6]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[7]  J. Aumont,et al.  Submillimetre point sources from the Archeops experiment : very cold clumps in the Galactic plane , 2008, 0801.4502.

[8]  M. Kunz,et al.  Searching for Non-Gaussian Signals in the BOOMERANG 2003 CMB Maps , 2007, New Astronomy Reviews.

[9]  D. Paradis,et al.  Far-infrared to millimeter astrophysical dust emission. I. A model based on physical properties of a , 2007, astro-ph/0701226.

[10]  P. Ábrahám,et al.  Constraints on the nature of dust particles by infrared observations , 2006, astro-ph/0609666.

[11]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis , 2006, astro-ph/0603451.

[12]  A. Melchiorri,et al.  A Measurement of the CMB ⟨EE⟩ Spectrum from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507514.

[13]  A. Melchiorri,et al.  A Measurement of the Polarization-Temperature Angular Cross-Power Spectrum of the Cosmic Microwave Background from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507507.

[14]  A. Melchiorri,et al.  Cosmological Parameters from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507503.

[15]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[16]  E. Hivon,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[17]  Nicola Vittorio,et al.  ROMA: a map-making algorithm for polarised CMB data sets , 2005, astro-ph/0502142.

[18]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[19]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[20]  Itziar Aretxaga,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  J. Bernard,et al.  Inverse temperature dependence of the dust submillimeter spectral index , 2003, astro-ph/0310091.

[22]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[23]  V. V. Hristov,et al.  BOOMERANG: A Balloon-borne Millimeter-Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background , 2002, astro-ph/0206254.

[24]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[25]  E. Hivon,et al.  High-Latitude Galactic Dust Emission in the BOOMERANG Maps , 2001, astro-ph/0101539.

[26]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[27]  E. M. Arnal,et al.  A high sensitivity HI survey of the sky at δ ≤ -25 ° . Final data release , 2000, astro-ph/0504136.

[28]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[29]  N. Odegard,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. III. Separation of Galactic Emission from the Infrared Sky Brightness , 1998, astro-ph/9805323.

[30]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[31]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[32]  C. Bennett,et al.  The COBE Mission: Its Design and Performance Two Years after Launch , 1992 .

[33]  J. Mould,et al.  The Age of the LMC Red Globular Cluster NGC 2213 , 1984 .

[34]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .