All-Digital Background Calibration Technique for Time-Interleaved ADC Using Pseudo Aliasing Signal

A new digital background calibration technique for gain mismatches and sample-time mismatches in a Time-Interleaved Analog-to-Digital Converter (TI-ADC) is presented to reduce the circuit area. In the proposed technique, the gain mismatches and the sample-time mismatches are calibrated by using pseudo aliasing signals instead of using a bank of adaptive FIR filters which is conventionally utilized. The pseudo aliasing signals are generated and subtracted from an ADC output. A pseudo aliasing generator consists of the Hadamard transform and a fixed FIR filter. In case of a two-channel 10-bit TI-ADC, the proposed technique reduces the requirement for a word length of the FIR filter by about 50% without a look-up table (LUT) compared with the conventional technique. In addition, the proposed technique requires only one FIR filter compared with the bank of adaptive filters which requires (M-1) FIR filters in an M-channel TI-ADC.

[1]  M El-Chammas,et al.  A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration , 2011, IEEE Journal of Solid-State Circuits.

[2]  Stephen H. Lewis,et al.  Correction of Mismatches in a Time-Interleaved Analog-to-Digital Converter in an Adaptively Equalized Digital Communication Receiver , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Bernard C. Levy,et al.  Blind Calibration of Timing Offsets for Four-Channel Time-Interleaved ADCs , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Fredrik Gustafsson,et al.  Blind equalization of time errors in a time-interleaved ADC system , 2005, IEEE Transactions on Signal Processing.

[5]  Jieh-Tsorng Wu,et al.  A Multiphase Timing-Skew Calibration Technique Using Zero-Crossing Detection , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  W. Black,et al.  Time interleaved converter arrays , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[7]  Kenneth W. Martin,et al.  A Background Sample-Time Error Calibration Technique Using Random Data for Wide-Band High-Resolution Time-Interleaved ADCs , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Gregory W. Wornell,et al.  Blind Calibration of Timing Skew in Time-Interleaved Analog-to-Digital Converters , 2009, IEEE Journal of Selected Topics in Signal Processing.

[9]  Chun-Cheng Huang,et al.  A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques , 2011, IEEE Journal of Solid-State Circuits.

[10]  Haruo Kobayashi,et al.  Explicit analysis of channel mismatch effects in time-interleaved ADC systems , 2001 .

[11]  Stephen H. Lewis,et al.  A Four-Channel Time-Interleaved ADC With Digital Calibration of Interchannel Timing and Memory Errors , 2010, IEEE Journal of Solid-State Circuits.

[12]  Stephen H. Lewis,et al.  Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Boris Murmann,et al.  General analysis on the impact of phase-skew in time-interleaved ADCs , 2009, 2008 IEEE International Symposium on Circuits and Systems.

[14]  P.J. Hurst,et al.  A 10b 120MSample/s time-interleaved analog-to-digital converter with digital background calibration , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).