Finite Horizon Analysis of Markov Chains with the Mur-phi Verifier

In this paper we present an explicit disk based verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold.

[1]  Enrico Tronci,et al.  Automatic verification of a turbogas control system with the Murφ verifier , 2003 .

[2]  David L. Dill,et al.  A New Scheme for Memory-Efficient Probabilistic Verification , 1996, FORTE.

[3]  Marta Z. Kwiatkowska,et al.  PRISM: Probabilistic Symbolic Model Checker , 2002, Computer Performance Evaluation / TOOLS.

[4]  Enrico Tronci,et al.  Exploiting Transition Locality in Automatic Verification , 2001, CHARME.

[5]  Ehrhard Behrends,et al.  Introduction to Markov Chains , 2000 .

[6]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[7]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[8]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[9]  Enrico Tronci,et al.  Automatic Verification of a Turbogas Control System with the Mur varphi Verifier , 2003, HSCC.

[10]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[11]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[12]  Amir Pnueli,et al.  Verification of multiprocess probabilistic protocols , 2005, Distributed Computing.

[13]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[14]  Daniel Lehmann,et al.  On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem , 1981, POPL '81.

[15]  Gerard J. Holzmann,et al.  Design and validation of computer protocols , 1991 .

[16]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[17]  Gerard J. Holzmann,et al.  The SPIN Model Checker , 2003 .

[18]  Micha Sharir,et al.  Probabilistic temporal logics for finite and bounded models , 1984, STOC '84.

[19]  Christel Baier,et al.  Symbolic Model Checking for Probabilistic Processes , 1997, ICALP.

[20]  Nancy A. Lynch,et al.  Proving time bounds for randomized distributed algorithms , 1994, PODC '94.

[21]  Amir Pnueli,et al.  Probabilistic Verification , 1993, Information and Computation.

[22]  Alan J. Hu,et al.  Protocol verification as a hardware design aid , 1992, Proceedings 1992 IEEE International Conference on Computer Design: VLSI in Computers & Processors.

[23]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[24]  Masahiro Fujita,et al.  Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping , 1993, 30th ACM/IEEE Design Automation Conference.

[25]  David L. Dill,et al.  Improved probabilistic verification by hash compaction , 1995, CHARME.

[26]  Mihalis Yannakakis,et al.  Verifying temporal properties of finite-state probabilistic programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[27]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.