Riordan arrays and applications via the classical umbral calculus

We use the classical umbral calculus to describe Riordan arrays. Here, a Riordan array is generated by a pair of umbrae, and this provides efficient proofs of several basic results of the theory such as the multiplication rule, the recursive properties, the fundamental theorem and the connection with Sheffer sequences. In particular, we show that the fundamental theorem turns out to be a reformulation of the umbral Abel identity. As an application, we give an elementary approach to the problem of extending integer powers of Riordan arrays to complex powers in such a way that additivity of the exponents is preserved. Also, ordinary Riordan arrays are studied within the classical umbral perspective and some combinatorial identities are discussed regarding Catalan numbers, Fibonacci numbers and Chebyshev polynomials.

[1]  UK,et al.  ONE-PARAMETER GROUPS AND COMBINATORIAL PHYSICS , 2004 .

[2]  Laurent Poinsot,et al.  A formal calculus on the Riordan near algebra , 2009 .

[3]  Umbral presentations for polynomial sequences , 1999, math/9908131.

[4]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[5]  Elvira Di Nardo,et al.  Cumulants and convolutions via Abel polynomials , 2010, Eur. J. Comb..

[6]  Leetsch C. Hsu,et al.  The Sheffer group and the Riordan group , 2007, Discret. Appl. Math..

[7]  Steven Roman The Umbral Calculus , 1984 .

[8]  William Y. C. Chen,et al.  Matrix identities on weighted partial Motzkin paths , 2007, Eur. J. Comb..

[9]  Renzo Sprugnoli,et al.  The Cauchy numbers , 2006, Discret. Math..

[10]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[11]  E. Nardo,et al.  Umbral nature of the Poisson random variables , 2004, math/0412054.

[12]  Marilena Barnabei,et al.  Recursive matrices and umbral calculus , 1982 .

[13]  Eduardo H. M. Brietzke An identity of Andrews and a new method for the Riordan array proof of combinatorial identities , 2008, Discret. Math..

[14]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[15]  Elvira Di Nardo,et al.  An umbral setting for cumulants and factorial moments , 2006, Eur. J. Comb..

[16]  Louis W. Shapiro,et al.  Bijections and the Riordan group , 2003, Theor. Comput. Sci..

[17]  Gian-Carlo Rota,et al.  The classical umbral calculus , 1994 .

[18]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[19]  Louis W. Shapiro,et al.  Runs, Slides and Moments , 1983 .

[20]  Gian-Carlo Rota,et al.  All polynomials of binomial type are represented by Abel polynomials , 1997 .

[21]  D. Senato,et al.  A symbolic handling of Sheffer polynomials , 2011 .

[22]  P. Petrullo A Symbolic Treatment of Abel Polynomials , 2009 .

[23]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[24]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[25]  Tianming Wang,et al.  Generalized Riordan arrays , 2008, Discret. Math..

[26]  L. W. Shapiro,et al.  A Catalan triangle , 1976, Discret. Math..

[27]  E. Nardo,et al.  The classical umbral calculus: Sheffer sequences. , 2008, 0810.3554.

[28]  P. Petrullo Outcomes of the Abel Identity , 2011, 1105.4317.