A GPU accelerated multiple revolution lambert solver for fast mission design

Lambert’s algorithm acts as an enabler for a large variety of mission design problems. Typically an overwhelmingly large number of Lambert solutions are needed to identify sets of mission feasible trajectories. We propose a Graphics Processing Unit (GPU) accelerated multiple revolution Lambert solver to combat this computationally expensive combinatorial problem. The implementation introduces a simple initial guess generator that exploits the inherent structure of the well-known Lambert function formulated in universal variables. Further, the approach builds from the concepts of parallel heterogeneous programming utilizing both the central processing unit (CPU) and GPU in tandem to achieve multiple orders of magnitude speedup. The solution strategy is transparent and scalable to specific user resources. Speedups of two orders of magnitudes are found using a state of the art GPU on a single personal workstation, while single order of magnitude speedups are observed using the GPU on a common laptop. Example gravity assisted flyby trajectories are used to demonstrate performance and potential applications.

[1]  B. G. Marsden,et al.  Initial orbit determination - The pragmatist's point of view , 1985 .

[2]  Erik Lindholm,et al.  NVIDIA Tesla: A Unified Graphics and Computing Architecture , 2008, IEEE Micro.

[3]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[4]  Jian Li,et al.  Multiple-Revolution Solutions of the Transverse-Eccentricity-Based Lambert Problem , 2010 .

[5]  R. Gooding A procedure for the solution of Lambert's orbital boundary-value problem , 1990, Celestial Mechanics and Dynamical Astronomy.

[6]  R. Blanchard,et al.  A unified form of Lambert's theorem , 1968 .

[7]  Nathan J. Strange,et al.  Automated Design of the Europa Orbiter Tour , 2000 .

[8]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[9]  James M. Longuski,et al.  Automated design of gravity-assist trajectories to Mars and the outer planets , 1991 .

[10]  K. G. Sukhanov,et al.  Multiple Gravity Assist Interplanetary Trajectories , 1998 .

[11]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[12]  K/S two-point-boundary-value problems , 1976 .

[13]  R. C. Blanchard,et al.  A note on Lambert's theorem. , 1966 .

[14]  Anastassios E. Petropoulos,et al.  Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars , 1998 .

[15]  J. Kr̆íž A uniform solution of the Lambert problem , 1976 .

[16]  Giulio Avanzini,et al.  A Simple Lambert Algorithm , 2008 .

[17]  Cesar A. Ocampo,et al.  Global Search for Idealized Free-Return Earth-Mars Cyclers , 2005 .

[18]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .

[19]  Richard Vuduc,et al.  Fast sensitivity computations for trajectory optimization , 2010 .

[20]  Cesar A. Ocampo,et al.  Geometric Analysis of Free-Return Trajectories Following a Gravity-Assisted Flyby , 2005 .

[21]  P. R. Escobal,et al.  Methods of orbit determination , 1976 .

[22]  C. Gauss,et al.  Theory of the motion of the heavenly bodies moving about the sun in conic sections : a translation of Theoria motus. , 1964 .

[23]  Kenneth B. Bley Analytic Determination of Perigee Passage Using Lambert's Theorem , 1967 .

[24]  R. Russell,et al.  FIRE: A fast, accurate, and smooth planetary body ephemeris interpolation system , 2008 .

[25]  D. Mortari,et al.  On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .

[26]  L. D. Friedman,et al.  Orbit design concepts for Jupiter orbiter missions , 1974 .

[27]  Richard W. Vuduc,et al.  Direct N-body Kernels for Multicore Platforms , 2009, 2009 International Conference on Parallel Processing.