A GPU accelerated multiple revolution lambert solver for fast mission design
暂无分享,去创建一个
[1] B. G. Marsden,et al. Initial orbit determination - The pragmatist's point of view , 1985 .
[2] Erik Lindholm,et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture , 2008, IEEE Micro.
[3] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[4] Jian Li,et al. Multiple-Revolution Solutions of the Transverse-Eccentricity-Based Lambert Problem , 2010 .
[5] R. Gooding. A procedure for the solution of Lambert's orbital boundary-value problem , 1990, Celestial Mechanics and Dynamical Astronomy.
[6] R. Blanchard,et al. A unified form of Lambert's theorem , 1968 .
[7] Nathan J. Strange,et al. Automated Design of the Europa Orbiter Tour , 2000 .
[8] D. D. Mueller,et al. Fundamentals of Astrodynamics , 1971 .
[9] James M. Longuski,et al. Automated design of gravity-assist trajectories to Mars and the outer planets , 1991 .
[10] K. G. Sukhanov,et al. Multiple Gravity Assist Interplanetary Trajectories , 1998 .
[11] R. Battin. An introduction to the mathematics and methods of astrodynamics , 1987 .
[12] K/S two-point-boundary-value problems , 1976 .
[13] R. C. Blanchard,et al. A note on Lambert's theorem. , 1966 .
[14] Anastassios E. Petropoulos,et al. Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars , 1998 .
[15] J. Kr̆íž. A uniform solution of the Lambert problem , 1976 .
[16] Giulio Avanzini,et al. A Simple Lambert Algorithm , 2008 .
[17] Cesar A. Ocampo,et al. Global Search for Idealized Free-Return Earth-Mars Cyclers , 2005 .
[18] Panagiotis Tsiotras,et al. Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .
[19] Richard Vuduc,et al. Fast sensitivity computations for trajectory optimization , 2010 .
[20] Cesar A. Ocampo,et al. Geometric Analysis of Free-Return Trajectories Following a Gravity-Assisted Flyby , 2005 .
[21] P. R. Escobal,et al. Methods of orbit determination , 1976 .
[22] C. Gauss,et al. Theory of the motion of the heavenly bodies moving about the sun in conic sections : a translation of Theoria motus. , 1964 .
[23] Kenneth B. Bley. Analytic Determination of Perigee Passage Using Lambert's Theorem , 1967 .
[24] R. Russell,et al. FIRE: A fast, accurate, and smooth planetary body ephemeris interpolation system , 2008 .
[25] D. Mortari,et al. On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .
[26] L. D. Friedman,et al. Orbit design concepts for Jupiter orbiter missions , 1974 .
[27] Richard W. Vuduc,et al. Direct N-body Kernels for Multicore Platforms , 2009, 2009 International Conference on Parallel Processing.