ATP‐driven Na+ transport and Na+‐dependent ATP synthesis in Escherichia coli grown at low \ΔgmH+

[1]  Y. Ikawa,et al.  A marine algal Na+‐activated ATPase possesses an immunologically identical epitope to Na+,K+‐ATPase , 1992, FEBS letters.

[2]  V. Skulachev,et al.  Involvement of a d‐type oxidase in the Na+‐motive respiratory chain of Escherichia coli growing under low Δ\̄gmH+ conditions , 1992 .

[3]  G. Gottschalk,et al.  Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. , 1992, European journal of biochemistry.

[4]  V. Skulachev,et al.  Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na(+)-motive respiration. , 1991, Biochimica et biophysica acta.

[5]  M. Wada,et al.  Presence of a Na+-activated ATPase in the Plasma Membrane of the Marine Raphidophycean Heterosigma akashiwo , 1989 .

[6]  V. Skulachev,et al.  The Na+‐motive respiration in Escherichia coli , 1989 .

[7]  V. Skulachev,et al.  A study on Na+-coupled oxidative phosphorylation: ATP formation supported by artificially imposed ΔpNa and ΔpK inVibrio alginolyticus cells , 1989 .

[8]  V. Skulachev,et al.  The ATP‐driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus , 1988, FEBS letters.

[9]  W. S. Brusilow Proton leakiness caused by cloned genes for the F0 sector of the proton-translocating ATPase of Escherichia coli: requirement for F1 genes , 1987, Journal of bacteriology.

[10]  V. Skulachev,et al.  The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. , 1986, Biochimica et biophysica acta.

[11]  P. Dimroth,et al.  Life by a new decarboxylation‐dependent energy conservation mechanism with Na+ as coupling ion , 1984, The EMBO journal.