Limit theorems for random compact sets in Banach space

[1]  H. Robbins On the Measure of a Random Set , 1944 .

[2]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[3]  H. Rådström An embedding theorem for spaces of convex sets , 1952 .

[4]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[5]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[6]  Henry Hermes,et al.  Calculus of Set Valued Functions and Control , 1968 .

[7]  R. Starr Quasi-Equilibria in Markets with Non-Convex Preferences , 1969 .

[8]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[9]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[10]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[11]  J. Cassels Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Michael B. Marcus,et al.  Central limit theorems for C(S)-valued random variables , 1975 .

[13]  G. Matheron Random Sets and Integral Geometry , 1976 .

[14]  Brian D. Ripley,et al.  The Foundations of Stochastic Geometry , 1976 .

[15]  Charles L. Byrne,et al.  Remarks on the set-valued integrals of Debreu and Aumann , 1978 .

[16]  Noel A Cressie,et al.  Strong limit-theorem for random sets , 1978 .

[17]  N. Cressie A central limit theorem for random sets , 1979 .

[18]  S. Mase,et al.  Random compact convex sets which are infinitely divisible with respect to Minkowski addition , 1979, Advances in Applied Probability.

[19]  Wolfgang Weil,et al.  An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .

[20]  Dan A. Ralescu,et al.  Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .

[21]  Marjorie G. Hahn,et al.  Limit theorems for random sets: An application of probability in banach space results , 1983 .