Limit theorems for random compact sets in Banach space
暂无分享,去创建一个
[1] H. Robbins. On the Measure of a Random Set , 1944 .
[2] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .
[3] H. Rådström. An embedding theorem for spaces of convex sets , 1952 .
[4] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[5] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[6] Henry Hermes,et al. Calculus of Set Valued Functions and Control , 1968 .
[7] R. Starr. Quasi-Equilibria in Markets with Non-Convex Preferences , 1969 .
[8] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[9] K. Arrow,et al. General Competitive Analysis , 1971 .
[10] Z. Artstein,et al. A Strong Law of Large Numbers for Random Compact Sets , 1975 .
[11] J. Cassels. Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] Michael B. Marcus,et al. Central limit theorems for C(S)-valued random variables , 1975 .
[13] G. Matheron. Random Sets and Integral Geometry , 1976 .
[14] Brian D. Ripley,et al. The Foundations of Stochastic Geometry , 1976 .
[15] Charles L. Byrne,et al. Remarks on the set-valued integrals of Debreu and Aumann , 1978 .
[16] Noel A Cressie,et al. Strong limit-theorem for random sets , 1978 .
[17] N. Cressie. A central limit theorem for random sets , 1979 .
[18] S. Mase,et al. Random compact convex sets which are infinitely divisible with respect to Minkowski addition , 1979, Advances in Applied Probability.
[19] Wolfgang Weil,et al. An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .
[20] Dan A. Ralescu,et al. Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .
[21] Marjorie G. Hahn,et al. Limit theorems for random sets: An application of probability in banach space results , 1983 .