Model Compression Using Progressive Channel Pruning

[1]  Sinno Jialin Pan,et al.  Cooperative Pruning in Cross-Domain Deep Neural Network Compression , 2019, IJCAI.

[2]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[3]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[4]  Ali Farhadi,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016, ECCV.

[5]  Ming-Yu Liu,et al.  Coupled Generative Adversarial Networks , 2016, NIPS.

[6]  Ali Farhadi,et al.  LCNN: Lookup-Based Convolutional Neural Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Larry S. Davis,et al.  NISP: Pruning Networks Using Neuron Importance Score Propagation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Michael I. Jordan,et al.  Unsupervised Domain Adaptation with Residual Transfer Networks , 2016, NIPS.

[10]  Dong Xu,et al.  Collaborative and Adversarial Network for Unsupervised Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Ivan V. Oseledets,et al.  Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition , 2014, ICLR.

[12]  Jiaxiang Wu,et al.  Collaborative Channel Pruning for Deep Networks , 2019, ICML.

[13]  Yifan Gong,et al.  Restructuring of deep neural network acoustic models with singular value decomposition , 2013, INTERSPEECH.

[14]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[15]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[16]  Jeff Johnson,et al.  Fast Convolutional Nets With fbfft: A GPU Performance Evaluation , 2014, ICLR.

[17]  Andrew Lavin,et al.  Fast Algorithms for Convolutional Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Hanan Samet,et al.  Pruning Filters for Efficient ConvNets , 2016, ICLR.

[19]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Liujuan Cao,et al.  Towards Optimal Structured CNN Pruning via Generative Adversarial Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Eunhyeok Park,et al.  Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications , 2015, ICLR.

[23]  Joan Bruna,et al.  Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation , 2014, NIPS.

[24]  Timo Aila,et al.  Pruning Convolutional Neural Networks for Resource Efficient Inference , 2016, ICLR.

[25]  Bingbing Ni,et al.  Variational Convolutional Neural Network Pruning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[27]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[28]  Song Han,et al.  AMC: AutoML for Model Compression and Acceleration on Mobile Devices , 2018, ECCV.

[29]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[30]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[31]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[32]  Yann LeCun,et al.  Fast Training of Convolutional Networks through FFTs , 2013, ICLR.

[33]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[34]  Andrew Zisserman,et al.  Speeding up Convolutional Neural Networks with Low Rank Expansions , 2014, BMVC.

[35]  Xiangyu Zhang,et al.  Channel Pruning for Accelerating Very Deep Neural Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[36]  Song Han,et al.  EIE: Efficient Inference Engine on Compressed Deep Neural Network , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[37]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[38]  Rui Peng,et al.  Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures , 2016, ArXiv.

[39]  Xiangyu Zhang,et al.  ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Ming Yang,et al.  Compressing Deep Convolutional Networks using Vector Quantization , 2014, ArXiv.

[41]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[42]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Jianxin Wu,et al.  ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).