Non-isothermal crystallization kinetics of the BaTiO3-KNbO3-SiO2 glass

We have investigated the non-isothermal formation kinetics of nanocrystals from the BaTiO3-KNbO3-SiO2 (BKSO) glass at temperatures from room temperature to 800 °C. The thermal characteristics and the structural transformations of the BKSO glass have been studied by means of a differential thermal analysis and X-ray diffraction. The crystallization of BKSO glass is found to accompany a single-step occurrence of a tetragonal Ba3TiNb4O15 nanocrystal structure. During the crystallization, a nanocrystals with a size of ∼40 nm at the initial stage grow with increasing temperature and reach a size of ∼120 nm by the time the crystallization finishes. We use the non-isothermal model of Johnson-Mehl-Avrami-Kolmogorov to characterize the kinetics of the crystallization process for the BKSO glass. The Avrami exponent of 3.5 indicates that the crystallization mechanisms is an increasing nucleation rate with diffusion-controlled growth. In the view of applications, providing information on how to control the size of nanograins systematically by simply controlling the annealing temperature of the glass state, as described in this study, should be useful.

[1]  R. Monteiro,et al.  Crystallization kinetics of a barium-zinc borosilicate glass by a non-isothermal method , 2014 .

[2]  Sean P. Culver,et al.  Local structural investigation of Eu(3+)-doped BaTiO3 nanocrystals. , 2014, Nanoscale.

[3]  Y. S. Yang,et al.  Isothermal crystallization kinetics of lithium-tantalate glass: Nanocrystal prepared by glass phase , 2013, Journal of the Korean Physical Society.

[4]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[5]  Y. S. Yang,et al.  Crystallization kinetics of lithium niobate glass: determination of the Johnson-Mehl-Avrami-Kolmogorov parameters. , 2013, Physical chemistry chemical physics : PCCP.

[6]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[7]  M. Secu Nanoparticles size effects in thermoluminescence of oxyfluoride glass-ceramics containing Sm3+-doped CaF2 nanocrystals , 2011 .

[8]  K. Pengpat,et al.  Phase separation and crystallization in LiNbO3/SiO2 glasses , 2009 .

[9]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[10]  Thomas R. Shrout,et al.  Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics , 2006 .

[11]  Thomas R. Shrout,et al.  Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics , 2006 .

[12]  Y. Wu,et al.  Diffused ferroelectrics of Ba6Ti2Nb8O30 and Sr6Ti2Nb8O30 with filled tungsten-bronze structure , 2005 .

[13]  Yiping Guo,et al.  Structure and Electrical Properties of Lead-Free (Na0.5K0.5)NbO3-BaTiO3 Ceramics , 2004 .

[14]  X. X. Wang,et al.  Electromechanical and ferroelectric properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2K1∕2)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2004 .

[15]  M. Cantoni,et al.  Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles , 2004 .

[16]  W. J. Weber,et al.  Amorphization and recrystallization of the ABO3 oxides , 2002 .

[17]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[18]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[19]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .