Image reconstruction by deterministic compressed sensing with chirp matrices
暂无分享,去创建一个
[1] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[2] E. Candès,et al. Sparsity and incoherence in compressive sampling , 2006, math/0611957.
[3] Xiang-Gen Xia,et al. Discrete chirp-Fourier transform and its application to chirp rate estimation , 2000, IEEE Trans. Signal Process..
[4] A. Robert Calderbank,et al. A fast reconstruction algorithm for deterministic compressive sensing using second order reed-muller codes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.
[5] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[6] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[7] E.J. Candes. Compressive Sampling , 2022 .
[8] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[9] Richard G. Baraniuk,et al. Compressive Sensing , 2008, Computer Vision, A Reference Guide.
[10] D. Donoho,et al. Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.
[11] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[12] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[13] R. Calderbank,et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery , 2009 .
[14] Richard G. Baraniuk,et al. A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.