Task-Based Solutions to Embedded Index Coding

In the <italic>index coding</italic> problem a sender holds a message <inline-formula> <tex-math notation="LaTeX">$x \in \{0,1\}^{n}$ </tex-math></inline-formula> and wishes to broadcast information to <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> receivers in a way that enables the <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula>th receiver to retrieve the <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula>th bit <inline-formula> <tex-math notation="LaTeX">$x_{i}$ </tex-math></inline-formula>. Every receiver has prior side information comprising a subset of the bits of <inline-formula> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula>, and the goal is to minimize the length of the information sent via the broadcast channel. Porter and Wootters have recently introduced the model of <italic>embedded index coding</italic>, where the receivers also play the role of the sender and the goal is to minimize the total length of their broadcast information. An embedded index code is said to be <italic>task-based</italic> if every receiver retrieves its bit based only on the information provided by one of the receivers. This paper studies the effect of the task-based restriction on linear embedded index coding. It is shown that for certain side information maps there exists a linear embedded index code of length quadratically smaller than that of any task-based embedded index code. The result attains, up to a multiplicative constant, the largest possible gap between the two quantities. The proof is by an explicit construction and the analysis involves spectral techniques.

[1]  Le Anh Vinh On the Number of Orthogonal Systems in Vector Spaces over Finite Fields , 2008, Electron. J. Comb..

[2]  Ishay Haviv On Minrank and the Lov\'asz Theta Function , 2018 .

[3]  Mary Wootters,et al.  Embedded Index Coding , 2019, 2019 IEEE Information Theory Workshop (ITW).

[4]  Omri Weinstein,et al.  The Minrank of Random Graphs , 2016, IEEE Transactions on Information Theory.

[5]  René Peeters,et al.  Orthogonal representations over finite fields and the chromatic number of graphs , 1996, Comb..

[6]  BirkYitzhak,et al.  Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients , 2006 .

[7]  Ziv Bar-Yossef,et al.  Index Coding With Side Information , 2006, IEEE Transactions on Information Theory.

[8]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[9]  Willem H. Haemers,et al.  On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.

[10]  Michael Langberg,et al.  On linear index coding for random graphs , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Arya Mazumdar On a duality between recoverable distributed storage and index coding , 2014, 2014 IEEE International Symposium on Information Theory.

[12]  Alexandros G. Dimakis,et al.  Instantly decodable network codes for real-time applications , 2013, 2013 International Symposium on Network Coding (NetCod).

[13]  V. Lalitha,et al.  On Locally Decodable Index Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[14]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[15]  Syed Ali Jafar,et al.  Topological Interference Management Through Index Coding , 2013, IEEE Transactions on Information Theory.

[16]  Yitzhak Birk,et al.  Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients , 2006, IEEE Transactions on Information Theory.

[17]  Lawrence Ong,et al.  The Single-Uniprior Index-Coding Problem: The Single-Sender Case and the Multi-Sender Extension , 2016, IEEE Transactions on Information Theory.

[18]  Min Li,et al.  Multi-Sender Index Coding for Collaborative Broadcasting: A Rank-Minimization Approach , 2019, IEEE Transactions on Communications.

[19]  Uri Stav,et al.  Non-Linear Index Coding Outperforming the Linear Optimum , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[20]  Ishay Haviv On Minrank and the Lovász Theta Function , 2018, APPROX-RANDOM.

[21]  Ishay Haviv,et al.  Linear Index Coding via Semidefinite Programming† , 2011, Combinatorics, Probability and Computing.

[22]  Noga Alon,et al.  Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..