Exchange Algorithm for Evaluation and Approximation Error-Optimized Polynomials

Machine implementation of mathematical functions often relies on polynomial approximations. The particularity is that rounding errors occur both when representing the polynomial coefficients on a finite number of bits, and when evaluating it in finite precision. Hence, for finding the best polynomial (for a given fixed degree, norm and interval), one has to consider both types of errors: approximation and evaluation. While efficient algorithms were already developed for taking into account the approximation error, the evaluation part is usually a posteriori handled, in an ad-hoc manner. Here, we formulate a semi-infinite linear optimization problem whose solution is the best polynomial with respect to the supremum norm of the sum of both errors. This problem is then solved with an iterative exchange algorithm, which can be seen as an extension of the well-known Remez algorithm. A discussion and comparison of the obtained results on different examples are finally presented.

[1]  Peyman Milanfar,et al.  A Stable Numerical Method for Inverting Shape from Moments , 1999, SIAM J. Sci. Comput..

[2]  Kellen Petersen August Real Analysis , 2009 .

[3]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[4]  Jean B. Lasserre Recovering an Homogeneous Polynomial from Moments of Its Level Set , 2013, Discret. Comput. Geom..

[5]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[6]  Nicolas Brisebarre,et al.  Efficient polynomial L-approximations , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[7]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[8]  Thierry Braconnier,et al.  From rouding error estimation to automatic correction with automatic differentiation , 2000 .

[9]  J. Muller,et al.  CR-LIBM A library of correctly rounded elementary functions in double-precision , 2006 .

[10]  Arnaud Tisserand High-performance hardware operators for polynomial evaluation , 2007, Int. J. High Perform. Syst. Archit..

[11]  Arnaud Tisserand,et al.  Computing machine-efficient polynomial approximations , 2006, TOMS.

[12]  P. J. Laurent,et al.  Un Algorithme General pour L'Approximation au sens de Tchbycheff de Fonctions Bornees sur un Ensemble Quelconque , 1976 .

[13]  Jean-Michel Muller,et al.  Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .

[14]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.

[15]  G. D. Taylor,et al.  Calculation of Best Restricted Approximations , 1970 .

[16]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[17]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[18]  B. Chalmers The Remez exchange algorithm for approximation with linear restrictions , 1976 .

[19]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[20]  Roberto Barrio,et al.  A General Condition Number for Polynomials , 2013, SIAM J. Numer. Anal..

[21]  Dmitry Batenkov,et al.  Moment inversion problem for piecewise D-finite functions , 2009, 0901.4665.

[22]  Guillaume Melquiond,et al.  Certification of bounds on expressions involving rounded operators , 2007, TOMS.

[23]  Jean B. Lasserre,et al.  Reconstruction of algebraic-exponential data from moments , 2014, 1401.6831.

[24]  J. Oliver,et al.  Rounding error propagation in polynomial evaluation schemes , 1979 .

[25]  Jean-Michel Muller,et al.  Fast and correctly rounded logarithms in double-precision , 2007, RAIRO Theor. Informatics Appl..

[26]  Christoph Quirin Lauter Arrondi correct de fonctions mathématiques : fonctions univariées et bivariées, certification et automatisation , 2008 .

[27]  Christoph Quirin Lauter,et al.  Sollya: An Environment for the Development of Numerical Codes , 2010, ICMS.

[28]  A. Shapiro Semi-infinite programming, duality, discretization and optimality conditions , 2009 .

[29]  Claude Carasso,et al.  L'algorithme d'échange en optimisation convexe , 1973 .

[30]  Frédéric Chyzak,et al.  The ABC of Creative Telescoping - Algorithms, Bounds, Complexity , 2014 .

[31]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[32]  Toshinori Oaku,et al.  Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities , 2011, J. Symb. Comput..

[33]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[34]  Viktor Kuncak,et al.  Towards a Compiler for Reals , 2014, ACM Trans. Program. Lang. Syst..

[35]  H. Whitney Geometric Integration Theory , 1957 .

[36]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[37]  L. Schwartz Théorie des distributions , 1966 .

[38]  Bernard Mourrain,et al.  Polynomial–Exponential Decomposition From Moments , 2016, Foundations of Computational Mathematics.

[39]  Nick Gravin,et al.  The Inverse Moment Problem for Convex Polytopes , 2011, Discret. Comput. Geom..

[40]  J. Harrison,et al.  Efficient and accurate computation of upper bounds of approximation errors , 2011, Theor. Comput. Sci..

[41]  Ian Briggs,et al.  Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions , 2015, FM.

[42]  Christoph Quirin Lauter,et al.  Metalibm: A Mathematical Functions Code Generator , 2014, ICMS.

[43]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[44]  Victor Magron,et al.  Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse Krivine-Stengle Representations , 2016, 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH).

[45]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[46]  Christoph Quirin Lauter,et al.  Semi-Automatic Floating-Point Implementation of Special Functions , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.