Gluing Eguchi‐Hanson Metrics and a Question of Page
暂无分享,去创建一个
[1] Olivier Biquard. Désingularisation de métriques d’Einstein. II , 2016 .
[2] Olivier Biquard. Désingularisation de métriques d’Einstein. I , 2013, 1311.0956.
[3] Jeff A. Viaclovsky,et al. Critical metrics on connected sums of Einstein four-manifolds , 2013, 1303.0827.
[4] S. Brendle. Rotational symmetry of self-similar solutions to the Ricci flow , 2012, 1202.1264.
[5] M. Pino,et al. Type II ancient compact solutions to the Yamabe flow , 2012, 1601.05349.
[6] Ryosuke Takahashi. An Ancient Solution of The Ricci Flow in Dimension 4 Converging to the Euclidean Schwarzschild Metric , 2012, 1206.5873.
[7] R. Hamilton,et al. Classification of ancient compact solutions to the Ricci flow on surfaces , 2012 .
[8] S. Brendle. Rotational symmetry of Ricci solitons in higher dimensions , 2012, 1203.0270.
[9] Xuezhang Chen,et al. The scalar curvature flow on Sn—perturbation theorem revisited , 2012 .
[10] Olivier Biquard. Désingularisation de métriques d’Einstein. I , 2011, Inventiones mathematicae.
[11] S. Brendle,et al. Ancient solutions to the Ricci flow with pinched curvature , 2009, 0912.0498.
[12] N. Kapouleas. Doubling and Desingularization Constructions for Minimal Surfaces , 2010, 1012.5788.
[13] S. Donaldson. Calabi-Yau metrics on Kummer surfaces as a model glueing problem , 2010, 1007.4218.
[14] V. Minerbe,et al. A Kummer Construction for Gravitational Instantons , 2010, 1005.5133.
[15] S. Brendle. Ricci Flow and the Sphere Theorem , 2010 .
[16] R. Bamler. Construction of Einstein metrics by generalized Dehn filling , 2009, 0911.4730.
[17] S. Brendle. Blow-up phenomena for the Yamabe equation , 2007, 0905.3840.
[18] O. Biquard,et al. Wormholes in ACH Einstein manifolds , 2006, math/0609558.
[19] M. Struwe. A flow approach to Nirenberg's problem , 2005 .
[20] J. McGregor. Metrics , 2005, J. Object Technol..
[21] Michael T. Anderson. Dehn Filling and Einstein Metrics in Higher Dimensions , 2003, math/0303260.
[22] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[23] J. Cheeger. Degeneration of Einstein metrics and metrics with special holonomy , 2003 .
[24] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[25] F. Pacard,et al. Maskit combinations of Poincaré–Einstein metrics , 2002, math/0211099.
[26] D. joyce. METRICS, CONNECTIONS AND GLUING THEOREMS (CBMS Regional Conference Series in Mathematics 89) , 1998 .
[27] D. joyce. Compact 8-manifolds with holonomySpin(7) , 1996 .
[28] C. Taubes. Metrics, connections and gluing theorems , 1996 .
[29] D. joyce. Compact 8-manifolds with holonomy Spin(7) , 1996 .
[30] F. Pacard,et al. A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis , 1994, dg-ga/9410004.
[31] M. Singer,et al. A Kummer-type construction of self-dual 4-manifolds , 1994 .
[32] R. Hamilton,et al. The formations of singularities in the Ricci Flow , 1993 .
[33] N Kapouleas,et al. Constant mean curvature surfaces constructed by fusing Wente tori , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[34] C. Taubes. The existence of anti-self-dual conformal structures , 1992 .
[35] Michael T. Anderson. Ricci curvature bounds and Einstein metrics on compact manifolds , 1989 .
[36] S. Bando,et al. On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth , 1989 .
[37] R. Schoen. The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation , 1988 .
[38] Christine Breiner,et al. Compact constant mean curvature surfaces in Euclidean three-space , 1987, 1210.3394.
[39] P. Topiwala. A new proof of the existence of Kähler-Einstein metrics onK3, I , 1987 .
[40] P. Topiwala. A new proof of the existence of Kähler-Einstein metrics onK3, II , 1987 .
[41] R. Hamilton. Four-manifolds with positive curvature operator , 1986 .
[42] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[43] D. Page. A periodic but nonstationary gravitational instanton , 1981 .
[44] G. Gibbons,et al. The Positive Action conjecture and asymptotically Euclidean metrics in quantum gravity , 1979 .
[45] D. Page. A physical picture of the K3 gravitational instanton , 1978 .
[46] A. Hanson,et al. Asymptotically flat self-dual solutions to euclidean gravity , 1978 .