A review of geochemical–mechanical impacts in geological carbon storage reservoirs

[1]  S. Vialle,et al.  Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water , 2011 .

[2]  C. Spiers,et al.  Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2 , 2009 .

[3]  X. Long,et al.  Unconventional gas: Experimental study of the influence of subcritical carbon dioxide on the mechanical properties of black shale , 2016 .

[4]  P. F. Martin,et al.  In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[5]  L. Laloui,et al.  Potential for Fault Reactivation Due to CO2 Injection in a Semi-Closed Saline Aquifer , 2017 .

[6]  Richard R. Hillis,et al.  Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock , 2004 .

[7]  B. Howard,et al.  Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide , 2013 .

[8]  Susumu Kawakami,et al.  Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at Yucca Mountain , 2005 .

[9]  D. Hoyt,et al.  Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions , 2017 .

[10]  B. Bai,et al.  A modified true triaxial apparatus for measuring mechanical properties of sandstone coupled with CO2‐H2O biphase fluid , 2017 .

[11]  Y. Leng,et al.  Molecular Understanding of CO2 and H2O in a Montmorillonite Clay Interlayer under CO2 Geological Sequestration Conditions , 2016 .

[12]  M. Andreani,et al.  Experimental Perspectives of Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions , 2013 .

[13]  Eleonore Stutzmann,et al.  Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history , 2007 .

[14]  Christopher J. Spiers,et al.  Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry , 2005 .

[15]  Sallie E Greenberg,et al.  Microseismic data acquisition, processing, and event characterization at the Illinois Basin – Decatur Project , 2016 .

[16]  M. Zoback,et al.  Empirical relations between rock strength and physical properties in sedimentary rocks , 2006 .

[17]  T. Plivelic,et al.  Intercalation and Retention of Carbon Dioxide in a Smectite Clay promoted by Interlayer Cations , 2015, Scientific Reports.

[18]  H. Ott,et al.  Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone , 2015 .

[19]  E. L. Sjöberg,et al.  A fundamental equation for calcite dissolution kinetics , 1976 .

[20]  R. Berner,et al.  Mechanism of pyroxene and amphibole weathering; II, Observations of soil grains , 1982 .

[21]  K. Pruess,et al.  Numerical simulation of CO2 disposal by mineral trapping in deep aquifers , 2004 .

[22]  Yiyu Lu,et al.  Swelling of shale in supercritical carbon dioxide , 2016 .

[23]  Angela Goodman,et al.  FT-IR study of CO2 interaction with Na + exchanged montmorillonite , 2015 .

[24]  Radisav D. Vidic,et al.  Kinetics and Equilibrium of Barium and Strontium Sulfate Formation in Marcellus Shale Flowback Water , 2014 .

[25]  Jian-Fu Shao,et al.  Influences of chemical degradation on mechanical behaviour of a limestone , 2011 .

[26]  R. S. MillerQuin,et al.  Experimental Study of Porosity Changes in Shale Caprocks Exposed to Carbon Dioxide-Saturated Brine II: Insights from Aqueous Geochemistry , 2016 .

[27]  J. Wilcox,et al.  Carbon Capture , 2012 .

[28]  Shuyu Sun,et al.  Molecular Simulation Study of Montmorillonite in Contact with Variably Wet Supercritical Carbon Dioxide , 2017 .

[29]  T Maldal,et al.  CO2 underground storage for Snøhvit gas field development , 2004 .

[30]  A. Bauer,et al.  The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK) , 2013 .

[31]  H. M. Wentinck,et al.  Swelling stress development in confined smectite clays through exposure to CO2 , 2018, International Journal of Greenhouse Gas Control.

[32]  Carl I. Steefel,et al.  Fluid-rock interaction: A reactive transport approach , 2009 .

[33]  A. Ladd,et al.  Wormhole formation in dissolving fractures , 2009, 0902.1374.

[34]  O. Pokrovsky,et al.  Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins , 2009 .

[35]  Martin Landrø,et al.  Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field , 2014 .

[36]  Tore A. Torp,et al.  Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects , 2004 .

[37]  Karsten Pruess,et al.  The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media , 2003 .

[38]  Jonny Rutqvist,et al.  Coupled reservoir-geomechanical analysis of CO2 injection at In Salah, Algeria , 2009 .

[39]  F. Orr,et al.  Use of Carbon Dioxide in Enhanced Oil Recovery , 1984, Science.

[40]  Carl I. Steefel,et al.  Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization , 2012 .

[41]  C. Peach,et al.  Creep of simulated reservoir sands and coupled chemical‐mechanical effects of CO2 injection , 2010 .

[42]  Jared T. Freiburg,et al.  Mineralogical Alterations During Laboratory-scale Carbon Sequestration Experiments for the Illinois Basin , 2013 .

[43]  A. Busch,et al.  X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. , 2012, Environmental science & technology.

[44]  A. Valocchi,et al.  Pore-scale study of transverse mixing induced CaCO₃ precipitation and permeability reduction in a model subsurface sedimentary system. , 2010, Environmental science & technology.

[45]  Yandi Hu,et al.  Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking. , 2011, Environmental science & technology.

[46]  Andy Rigg,et al.  The GEODISC Program: Research into Geological Sequestration of CO2 in Australia , 2001 .

[47]  R. Glass,et al.  Experimental observations of fracture dissolution: The role of Peclet number on evolving aperture variability , 2003 .

[48]  R. Wogelius,et al.  Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids , 1991 .

[49]  J. Santamarina,et al.  Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces , 2012 .

[50]  C. Medina,et al.  Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration , 2011 .

[51]  Gunther Baumann,et al.  Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site , 2014 .

[52]  J. Lillo,et al.  Experimental CO2 injection: Study of physical changes in sandstone porous media using Hg porosimetry and 3D pore network models , 2015 .

[53]  S. Benson,et al.  Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media , 2018 .

[54]  Jared T. Freiburg,et al.  Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO 2 storage reservoir—The Cambrian Mt. Simon Sandstone, Illinois Basin, USA , 2016 .

[55]  W. Seyfried,et al.  Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2‐rich brine , 2017 .

[56]  C. Noiriel,et al.  Pore-Scale Geochemical Reactivity Associated with CO2 Storage: New Frontiers at the Fluid-Solid Interface. , 2017, Accounts of chemical research.

[57]  A. Riaz,et al.  Carbon dioxide sequestration in saline formations: Part 2—Review of multiphase flow modeling , 2014 .

[58]  J. Soler,et al.  Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples , 2015 .

[59]  P. Gouze,et al.  Geochemical investigations of saltwater intrusion into the coastal carbonate aquifer of Mallorca, Spain , 2013 .

[60]  H. Shao,et al.  Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions. , 2010, Environmental science & technology.

[61]  Mart Oostrom,et al.  Liquid CO2 displacement of water in a dual-permeability pore network micromodel. , 2011, Environmental science & technology.

[62]  P. Aagaard,et al.  Kinetic modelling of CO2–water–rock interactions , 2013 .

[63]  Matthew T. Balhoff,et al.  Discrete element modeling of indentation tests to investigate mechanisms of CO2‐related chemomechanical rock alteration , 2016 .

[64]  M. Mazzotti,et al.  The effect of CO2 and salinity on olivine dissolution kinetics at 120∘C , 2009 .

[65]  C. Peach,et al.  The effect of CO2 on creep of wet calcite aggregates , 2012 .

[66]  Jonny Rutqvist,et al.  The Geomechanics of CO2 Storage in Deep Sedimentary Formations , 2012, Geotechnical and Geological Engineering.

[67]  J. Fitts,et al.  Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock. , 2013, Environmental engineering science.

[68]  Mark A. Knackstedt,et al.  3D characterisation of potential CO2 reservoir and seal rocks , 2013 .

[69]  M. Mazzotti,et al.  Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure , 2008 .

[70]  Data integration, reservoir response, and application , 2016 .

[71]  B. Berkowitz,et al.  Flow, dissolution, and precipitation in dolomite , 2003 .

[72]  Andreas Englert,et al.  Mixing, spreading and reaction in heterogeneous media: a brief review. , 2011, Journal of contaminant hydrology.

[73]  J. Soler,et al.  2D reactive transport modeling of the interaction between a marl and a CO2-rich sulfate solution under supercritical CO2 conditions , 2016 .

[74]  J. Trusler,et al.  Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions. , 2016, Faraday discussions.

[75]  Robert A. Bauer,et al.  Overview of microseismic response to CO2 injection into the Mt. Simon saline reservoir at the Illinois Basin-Decatur Project , 2016 .

[76]  J. Nauroy,et al.  3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin , 2009 .

[77]  P. F. Martin,et al.  In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide , 2012 .

[78]  François Renard,et al.  Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth , 2010 .

[79]  Fabrizio Gherardi,et al.  Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir , 2007 .

[80]  J. Trusler,et al.  Kinetics of calcite dissolution in CO2-saturated water at temperatures between (323 and 373) K and pressures up to 13.8 MPa , 2015 .

[81]  M. Blunt,et al.  Pore‐space structure and average dissolution rates: A simulation study , 2016 .

[82]  Martin J Blunt,et al.  Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. , 2015, Environmental science & technology.

[83]  Faye Liu,et al.  CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature , 2012 .

[84]  James P. Verdon,et al.  Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations , 2011 .

[85]  S. Whitaker The method of volume averaging , 1998 .

[86]  Catherine A. Peters,et al.  Accessibilities of reactive minerals in consolidated sedimentary rock: An imaging study of three sandstones , 2009 .

[87]  R. Miri,et al.  Salt precipitation during CO2 storage—A review , 2016 .

[88]  Christophe Tournassat,et al.  A database of dissolution and precipitation rates for clay-rocks minerals , 2015 .

[89]  Ross Anderson,et al.  Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels , 2001 .

[90]  K. Jordan,et al.  Molecular Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite , 2013 .

[91]  S. Carroll,et al.  Development of scaling parameters to describe CO2–rock interactions within Weyburn-Midale carbonate flow units , 2013 .

[92]  T. Tsotsis,et al.  Impact of Brine/CO2 exposure on the transport and mechanical properties of the Mt Simon sandstone , 2019, Journal of Petroleum Science and Engineering.

[93]  D. Grgić Influence of CO2 on the long‐term chemomechanical behavior of an oolitic limestone , 2011 .

[94]  R. S. MillerQuin,et al.  Experimental Study of Porosity Changes in Shale Caprocks Exposed to CO2-Saturated Brines I: Evolution of Mineralogy, Pore Connectivity, Pore Size Distribution, and Surface Area , 2016 .

[95]  Beverly Z. Saylor,et al.  Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio , 2006 .

[96]  Prasad Saripalli,et al.  Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration , 2002 .

[97]  S. Frailey,et al.  Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA , 2011 .

[98]  Don W. Vasco,et al.  A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator , 2011 .

[99]  J. Fitts,et al.  Modifications of Carbonate Fracture Hydrodynamic Properties by CO 2 -Acidified Brine Flow , 2013 .

[100]  J. Soler,et al.  Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions , 2016 .

[101]  G. Koperna,et al.  CO2-Enhanced Oil Recovery Potential of the Appalachian Basin , 2007 .

[102]  E. Bemer,et al.  Geomechanical Log Deduced from Porosity and Mineralogical Content , 2004 .

[103]  Hannes E. Leetaru,et al.  Early Operational Experience at a One-million Tonne CCS Demonstration Project, Decatur, Illinois, USA☆ , 2013 .

[104]  J. Carey,et al.  Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers , 2008 .

[105]  J. Verdon,et al.  Significance for secure CO2 storage of earthquakes induced by fluid injection , 2014 .

[106]  E. Ilton,et al.  CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. , 2013, Environmental science & technology.

[107]  D. Presti,et al.  Supercritical CO2 Confined in Palygorskite and Sepiolite Minerals: A Classical Molecular Dynamics Investigation , 2016 .

[108]  Multiphase Monte Carlo and Molecular Dynamics Simulations of Water and CO2 Intercalation in Montmorillonite and Beidellite , 2015, 1801.01176.

[109]  J. Banfield,et al.  Chemical weathering of silicates in nature; a microscopic perspective with theoretical considerations , 1995 .

[110]  Martin J. Blunt,et al.  Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography - effect of initial pore structure and flow conditions , 2016 .

[111]  S. Durucan,et al.  Experimental investigation into salt precipitation during CO2 injection in saline aquifers , 2011 .

[112]  S. Carroll,et al.  Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO2 core-flood experiments , 2017 .

[113]  David L. Parkhurst,et al.  The kinetics of calcite dissolution in CO 2 -water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO 2 , 1978 .

[114]  C. Arson,et al.  Chemomechanical evolution of pore space in carbonate microstructures upon dissolution: Linking pore geometry to bulk elasticity , 2015 .

[115]  E. Oelkers,et al.  An experimental study of calcite and limestone dissolution rates as a function of pH from −1 to 3 and temperature from 25 to 80°C , 1998 .

[116]  Xiuyu Wang,et al.  Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery , 2013 .

[117]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[118]  A. Lasaga Chemical kinetics of water‐rock interactions , 1984 .

[119]  Karsten Pruess,et al.  Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations , 2003 .

[120]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[121]  Samuel Krevor,et al.  Pore-Scale Heterogeneity in the Mineral Distribution and Reactive Surface Area of Porous Rocks , 2015 .

[122]  E. Tipping,et al.  The complexation of protons, aluminium and calcium by aquatic humic substances: A model incorporating binding-site heterogeneity and macroionic effects , 1988 .

[123]  S. Carroll,et al.  CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments , 2013 .

[124]  S. Carroll,et al.  Rates of mineral dissolution under CO2 storage conditions , 2015 .

[125]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[126]  S. Benson,et al.  Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging , 2016, Journal of Fluid Mechanics.

[127]  P. F. Martin,et al.  In situ study of CO₂ and H₂O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[128]  Peter K. Kitanidis,et al.  Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging , 2016 .

[129]  P. Blum,et al.  Flow-through experiments on water–rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions , 2015 .

[130]  Iain Wright,et al.  In Salah CO2 Storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria , 2011 .

[131]  Jared T. Freiburg,et al.  Effects of Mineral Surface Properties on Supercritical CO2 Wettability in a Siliciclastic Reservoir , 2017 .

[132]  T. Tsotsis,et al.  Modeling $$\hbox {CO}_2$$CO2-Induced Alterations in Mt. Simon Sandstone via Nanomechanics , 2018, Rock Mechanics and Rock Engineering.

[133]  J. Lombard,et al.  From Injectivity to Integrity Studies of CO2 Geological Storage - Chemical Alteration Effects on Carbonates Petrophysical and Geomechanical Properties , 2010 .

[134]  H. Marbler,et al.  Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs , 2013, Environmental Earth Sciences.

[135]  G. Nover,et al.  Changes of petrophysical properties of sandstones due to interaction with supercritical carbon dioxide – a laboratory study , 2013 .

[136]  P. Jouanna,et al.  Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage , 2008 .

[137]  E. Boek,et al.  Multi-scale Imaging and Simulation of Structure, Flow and Reactive Transport for CO2 Storage and EOR in Carbonate Reservoirs , 2013 .

[138]  Tongwei Zhang,et al.  Experimental investigation of main controls to methane adsorption in clay-rich rocks , 2012 .

[139]  Odeta Qafoku,et al.  In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2. , 2012, Environmental science & technology.

[140]  Virginie Marry,et al.  Carbon Dioxide in Montmorillonite Clay Hydrates: Thermodynamics, Structure, and Transport from Molecular Simulation , 2010 .

[141]  Craig M. Bethke,et al.  Geochemical reaction modeling , 1996 .

[142]  A. Costa,et al.  Permeability‐porosity relationship: A reexamination of the Kozeny‐Carman equation based on a fractal pore‐space geometry assumption , 2006 .

[143]  Toby Aiken,et al.  Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations , 2010 .

[144]  C. Steefel,et al.  A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution rea , 1994 .

[145]  Herbert T. Schaef,et al.  Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates , 2015 .

[146]  Russell L. Detwiler,et al.  Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions , 2013 .

[147]  P. Ranjith,et al.  CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: An experimental study , 2015 .

[148]  K. Knauss,et al.  Influence of etch pit development on the surface area and dissolution kinetics of the orthoclase (001) surface , 2016 .

[149]  Hong-yan Hu,et al.  Changes in micromechanical properties of Na-montmorillonite caused by CO2/H2O sorption , 2017 .

[150]  Valerie Smith,et al.  Illinois Basin – Decatur Project pre-injection microseismic analysis , 2016 .

[151]  J. Carrera,et al.  Changes in Hydrodynamic, Structural and Geochemical Properties in Carbonate Rock Samples Due to Reactive Transport , 2017 .

[152]  H. Teng,et al.  Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2 , 2012 .

[153]  M. Balhoff,et al.  Reservoir rock chemo-mechanical alteration quantified by triaxial tests and implications to fracture reactivation , 2018, International Journal of Rock Mechanics and Mining Sciences.

[154]  Mohamed Azaroual,et al.  Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces , 2014 .

[155]  J. Druhan,et al.  Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies , 2016 .

[156]  H. Nasr-El-Din,et al.  Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks , 2006 .

[157]  M. Sahimi,et al.  Adsorption-induced swelling of porous media , 2017 .

[158]  A. Busch,et al.  Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration , 2012 .

[159]  S. Carroll,et al.  Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure. , 2013, Environmental science & technology.

[160]  E. Oelkers,et al.  Do clay mineral dissolution rates reach steady state , 2005 .

[161]  Mary Peterson,et al.  Role of reactive-surface-area characterization in geochemical kinetic models , 1990 .

[162]  A. Dolman,et al.  Inverse carbon dioxide flux estimates for the Netherlands , 2012 .

[163]  Peter K. Kitanidis,et al.  Large‐scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) , 2014 .

[164]  Y. Leng,et al.  Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[165]  Karsten Pruess,et al.  CO2 injection impairment due to halite precipitation , 2009 .

[166]  Albert J. Valocchi,et al.  Pore‐scale simulation of mixing‐induced calcium carbonate precipitation and dissolution in a microfluidic pore network , 2012 .

[167]  Philippe Gouze,et al.  Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes , 2014, Transport in Porous Media.

[168]  C. Tsang,et al.  A study of caprock hydromechanical changes associated with CO2-injection into a brine formation , 2002 .

[169]  C. Werth,et al.  Impacts of geochemical reactions on geologic carbon sequestration. , 2013, Environmental science & technology.

[170]  X. Long,et al.  Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction , 2016, Materials.

[171]  D. DePaolo,et al.  The Nanoscale Basis of CO2 Trapping for Geologic Storage. , 2015, Environmental science & technology.

[172]  François Renard,et al.  Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: Weak acid, weak effects? , 2016 .

[173]  Michel Quintard,et al.  On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium , 2002, Journal of Fluid Mechanics.

[174]  J. Randerson,et al.  Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide , 2011 .

[175]  Haixiang Hu,et al.  Evolutions in the Elastic Constants of Ca-Montmorillonites with H2O/CO2 Mixture under Supercritical Carbon Dioxide Conditions , 2017 .

[176]  Bernhard M. Krooss,et al.  Geological controls on the methane storage capacity in organic-rich shales , 2014 .

[177]  P. Gouze,et al.  Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks , 2009 .

[178]  François Renard,et al.  Enhanced deformation of limestone and sandstone in the presence of high pCO2 fluids , 2007 .

[179]  Andreas Busch,et al.  Carbon dioxide storage potential of shales , 2008 .