Orbital-order phase transition in Pr1−xCaxMnO3 probed by photovoltaics

A new phase diagram of $Pr_{1-x}Ca_xMnO_3$ for x $\le$ 0.3 is derived that suggests a necessary revaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures 850 K for x=0.1 and 950 K for x=0, we propose a loss of spontaneous order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. Anomalies at a temperature 220-260 K have been observed in epitaxial thin films of doping x=0.1 for photovoltaic effect, electric transport, magnetisation, optical and ultrafast transient pump probe studies. The onset of the polaron photovoltaic effect and the increase of the hot polaron relaxation time below $T_{OO}$ suggest a change in the orbital order. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital-order phase transition at $T_{OO} \approx$ 300 K for x=0.1. This is consistent with the experimental observation of a change in temperature dependent lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition.

[1]  P. Blöchl,et al.  Room-Temperature Hot-Polaron Photovoltaics in the Charge-Ordered State of a Layered Perovskite Oxide Heterojunction , 2020 .

[2]  V. Roddatis,et al.  Phase Transitions in a Perovskite Thin Film Studied by Environmental In Situ Heating Nano‐Beam Electron Diffraction , 2020 .

[3]  T. Katsufuji,et al.  Nucleation and growth of orbital ordering , 2020, Nature Communications.

[4]  P. Blöchl,et al.  Evolution of the magnetic and polaronic order of Pr1/2Ca1/2MnO3 following an ultrashort light pulse , 2019, 1909.03412.

[5]  L. Ryder Charge , 2019, Definitions.

[6]  H. Hou,et al.  Ultrafast electron and spin dynamics of strongly correlated NdNiO3 , 2018, Journal of Physics D: Applied Physics.

[7]  V. Roddatis,et al.  Effect of charge ordering on crossplane thermal conductivity in correlated perovskite oxide superlattices , 2018, Physical Review B.

[8]  J. Dwivedi,et al.  Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds , 2018 .

[9]  V. Roddatis,et al.  Contribution of Jahn-Teller and charge transfer excitations to the photovoltaic effect of manganite/titanite heterojunctions , 2017 .

[10]  S. Techert,et al.  Evolution of Hot Polaron States with a Nanosecond Lifetime in a Manganite Perovskite , 2017 .

[11]  V. Roddatis,et al.  Electronic structure of Pr 1 − x Ca x MnO 3 , 2016, 1610.07548.

[12]  H. Ulrichs,et al.  Numerical calculation of laser-induced thermal diffusion and elastic dynamics , 2016 .

[13]  M. Venkatesan,et al.  Surface magnetism of strontium titanate , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  W. Hergert,et al.  The low-temperature magnetostructure and magnetic field response of Pr0.9Ca0.1MnO3: the roles of Pr spins and magnetic phase separation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  S. Techert,et al.  Temperature- and doping-dependent optical absorption in the small-polaron system Pr1−xCaxMnO3. , 2015 .

[16]  K. Huth Transport , 2015, Canadian Medical Association Journal.

[17]  C. Jooss,et al.  Effects of interaction and disorder on polarons in colossal resistance manganite Pr0.68Ca0.32MnO3 thin films , 2014 .

[18]  D. Su,et al.  Polaron absorption for photovoltaic energy conversion in a manganite-titanate pn heterojunction , 2012 .

[19]  J. Dho Electrode size dependent I–V characteristics and photovoltaic effect in the oxide p–n junctions Pr0.7Ca0.3MnO3/Nb : SrTiO3 and La0.7Ca0.3MnO3/Nb : SrTiO3 , 2010 .

[20]  H. Kumigashira,et al.  Angle-resolved photoemission study of Nb-doped SrTiO3 , 2009 .

[21]  R. Klie,et al.  Experimental confirmation of Zener-polaron-type charge and orbital ordering in Pr1−xCaxMnO3 , 2007 .

[22]  V. Gusev,et al.  Ultrafast electronic dynamics in the metal-insulator transition compound Nd Ni O 3 , 2007 .

[23]  K. J. Thomas,et al.  Orbital domain dynamics in a doped manganite , 2007, 0709.3558.

[24]  T. Beetz,et al.  Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites , 2007, Proceedings of the National Academy of Sciences.

[25]  S. van Smaalen,et al.  Quantitative description of the tilt of distorted octahedra in ABX3 structures. , 2007, Acta crystallographica. Section B, Structural science.

[26]  T. Hotta Orbital ordering phenomena in d- and f-electron systems , 2006, cond-mat/0604467.

[27]  Z. Lü,et al.  Specific heat of single-crystal PrMnO3 , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  S. Wilkins,et al.  Probing orbital order with soft x-rays: the case of the manganites , 2005 .

[29]  J. Goodenough,et al.  Universal octahedral-site distortion in orthorhombic perovskite oxides. , 2005, Physical review letters.

[30]  J. Garai Correlation between thermal expansion and heat capacity , 2004, physics/0404117.

[31]  R. Zheng,et al.  Transport, ultrasound, and structural properties for the charge-ordered Pr 1-x Ca x MnO 3 ( 0.5⩽x⩽0.875 ) manganites , 2004, cond-mat/0403148.

[32]  M. Brando,et al.  Magnetic properties and specific heat of RMnO3 (R=Pr, Nd) , 2004 .

[33]  J. Goodenough,et al.  Orbital order-disorder transition in single-valent manganites , 2003 .

[34]  J. Goodenough,et al.  Exchange interactions in the perovskites Ca1-xSrxMnO3 and RMnO3 (R=La, Pr, Sm) , 2003 .

[35]  K. J. Thomas,et al.  Resonant x-ray diffraction of the magnetoresistant perovskite Pr0.6Ca0.4MnO3 , 2003, cond-mat/0305216.

[36]  J. Alonso,et al.  Neutron-diffraction study of the Jahn–Teller transition in PrMnO3 , 2002 .

[37]  J. Rodríguez-Carvajal,et al.  Zener polaron ordering in half-doped manganites. , 2002, Physical review letters.

[38]  U. Ruett,et al.  Glass transition in the polaron dynamics of colossal magnetoresistive manganites. , 2002, Physical review letters.

[39]  C. Martin,et al.  Magnetic contributions to the low-temperature specific heat of the ferromagnetic insulator Pr0.8Ca0.2MnO3 , 2002, cond-mat/0203365.

[40]  S. Cheong,et al.  Orbital correlations in doped manganites , 2001, cond-mat/0105064.

[41]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[42]  Richard D. Averitt,et al.  Spin–lattice interaction in colossal magnetoresistance manganites , 2000 .

[43]  Y. Tomioka,et al.  X-ray resonant scattering studies of orbital and charge ordering in Pr 1 − x Ca x MnO 3 , 2000, cond-mat/0007231.

[44]  M. T. Casais,et al.  Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.

[45]  J. Goodenough,et al.  Paramagnetic phase in single-crystal LaMnO 3 , 1999 .

[46]  C. Rao,et al.  Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3 Perovskites at Room Temperature , 1998 .

[47]  M. Tanaka,et al.  Resonant X-Ray Scattering from Orbital Ordering in LaMnO 3 , 1998 .

[48]  J. Cohn,et al.  Local lattice distortions and thermal transport in perovskite manganites , 1997 .

[49]  J. Hejtmánek,et al.  Canted structures in the Mn3+/Mn4+ perovskites , 1997 .

[50]  V. Anisimov,et al.  ORBITAL AND CHARGE ORDERING IN PR1-XCAXMNO3(X=0 AND 0.5) FROM THE AB INITIO CALCULATIONS , 1996, cond-mat/9609158.

[51]  Balakrishnan,et al.  Influence of charge and magnetic ordering on the insulator-metal transition in Pr1-xCaxMnO3. , 1995, Physical review. B, Condensed matter.

[52]  Y. Tomioka,et al.  A First-Order Phase Transition Induced by a Magnetic Field , 1995, Science.

[53]  Yoshizawa,et al.  Neutron-diffraction study of the magnetic-field-induced metal-insulator transition in Pr0.7Ca0.3MnO3. , 1995, Physical review. B, Condensed matter.

[54]  Y. Tomioka,et al.  Anomalous Magnetotransport Properties of Pr1-xCaxMnO3 , 1995 .

[55]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[56]  Schultz,et al.  Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. , 1993, Physical review letters.

[57]  H. Taguchi,et al.  High-temperature phase transition of CaMnO3−δ , 1989 .

[58]  V. V. Bryksin,et al.  Hopping Conduction in Solids , 1985 .

[59]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[60]  Z. Šimša,et al.  Neutron diffraction study of Pr1 − xCaxMnO3 perovskites , 1985 .

[61]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[62]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[63]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[64]  G. Kádár,et al.  Neutron diffraction study of Mn3Ga , 1970 .

[65]  J. Kanamori Crystal Distortion in Magnetic Compounds , 1960 .

[66]  E. Wollan,et al.  Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [ ( 1 − x ) La , x Ca ] Mn O 3 , 1955 .

[67]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[68]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[69]  J. A. Faulkner Paul , 1928 .

[70]  A. Akl,et al.  Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films , 2016 .

[71]  P. Paturi,et al.  Anomalous Thermal Expansion in (Pr,Ca)MnO3 Due to Orbital Ordering , 2015 .

[72]  C. Jooss,et al.  Strain driven phase decomposition in ion-beam sputtered Pr 1− x Ca x MnO 3 films , 2015 .

[73]  H. Salamati,et al.  Specific heat and magnetocaloric effect of Pr1−xAgxMnO3 manganites , 2013, Journal of Materials Science.

[74]  W. Marsden I and J , 2012 .

[75]  Alan V. Hewat Structural Phase Transitions , 2006 .

[76]  安達 定雄 Handbook on physical properties of semiconductors , 2004 .

[77]  C. Rincón,et al.  Temperature dependence of the optical energy band gap in CuIn3Se5 and CuGa3Se5 , 2003 .

[78]  Y. Tomioka,et al.  Interplay of charge, orbital and magnetic order in Pr 1− x Ca x MnO 3 , 1999 .

[79]  V. Dmitrienko Forbidden reflections due to anisotropic X-ray susceptibility of crystals , 1983 .

[80]  E. Pollert,et al.  Structural study of Pr1−xCaxMnO3 and Y1−xCaxMnO3 perovskites , 1982 .

[81]  H. Thomas,et al.  Structural Phase Transitions I , 1981 .

[82]  R. Cowley,et al.  Structural phase transitions I. Landau theory , 1980 .

[83]  G. Villeneuve,et al.  Structural and magnetization study of Pr1−xCaxMnO3 , 1980 .

[84]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[85]  J. V. Vleck The Jahn‐Teller Effect and Crystalline Stark Splitting for Clusters of the Form XY6 , 1939 .