SUSCEPTIBILITY OF RANDOM GRAPHS WITH GIVEN VERTEX DEGREES

We study the susceptibility, i.e., the mean cluster size, in random graphs with given vertex degrees. We show, under weak as- sumptions, that the susceptibility converges to the expected cluster size in the corresponding branching process. In the supercritical case, a cor- responding result holds for the modied susceptibility ignoring the giant component and the expected size of a nite cluster in the branching pro- cess; this is proved using a duality theorem. The critical behaviour is studied. Examples are given where the critical exponents dier on the subcritical and supercritical sides.

[1]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[2]  Svante Janson,et al.  Susceptibility in subcritical random graphs , 2008, 0806.0252.

[3]  Svante Janson The Probability That a Random Multigraph is Simple , 2009, Comb. Probab. Comput..

[4]  N. Wormald Some problems in the enumeration of labelled graphs , 1980, Bulletin of the Australian Mathematical Society.

[5]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Svante Janson,et al.  A new approach to the giant component problem , 2007, Random Struct. Algorithms.

[7]  Svante Janson,et al.  Duality in inhomogeneous random graphs, and the cut metric , 2011, Random Struct. Algorithms.

[8]  J. Hopcroft,et al.  Are randomly grown graphs really random? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Nicholas C. Wormald,et al.  The asymptotic connectivity of labelled regular graphs , 1981, J. Comb. Theory B.

[10]  Svante Janson PROBABILITY ASYMPTOTICS: NOTES ON NOTATION , 2009 .

[11]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[12]  Joel H. Spencer,et al.  Birth control for giants , 2007, Comb..

[13]  S Alex Smith Layered percolation on the complete graph , 2008 .

[14]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[15]  Svante Janson,et al.  Phase transitions for modified Erdős–Rényi processes , 2010, 1005.4494.

[16]  Remco van der Hofstad,et al.  Expansion in ${\boldsymbol{n^{-1}}}$ for Percolation Critical Values on the $n$-cube and ${\boldsymbol{{\mathbb Z}^n}}$: the First Three Terms , 2006, Comb. Probab. Comput..

[17]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[18]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[19]  Remco van der Hofstad,et al.  Asymptotic expansions in n−1 for percolation critical values on the n‐Cube and ℤn , 2005, Random Struct. Algorithms.

[20]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[21]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[22]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[23]  Nicholas C. Wormald,et al.  The asymptotic distribution of short cycles in random regular graphs , 1981, J. Comb. Theory, Ser. B.

[24]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[25]  R. Durrett Random Graph Dynamics: References , 2006 .

[26]  R. Jackson Inequalities , 2007, Algebra for Parents.

[27]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[28]  K. Athreya,et al.  Multi-Type Branching Processes , 1972 .

[29]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[30]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[31]  A. Gut Probability: A Graduate Course , 2005 .

[32]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[33]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[34]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[35]  H. Poincaré,et al.  Percolation ? , 1982 .

[36]  S. Janson,et al.  Graphs with specified degree distributions, simple epidemics, and local vaccination strategies , 2007, Advances in Applied Probability.