Electronic structure of C60: from the molecular to the solid state

The electronic structure of fullerides is discussed in the theoretical framework of an INDO (intermediate neglect of differential overlap) Hamiltonian defined for molecules and, in the basis of Bloch orbitals, for crystalline solids. In the C60 molecule the strength of the symmetry allowed π/σ and π*/σ* interaction is quantified by using localized molecular orbitals (MOs) as well as a so-called precanonical MO basis confined to decoupled π,π* and σ,σ* MO spaces. Consequences for the solid state electronic structure of C60 are given. The theoretical determination of the electronic transition energies in the C60 molecule in a CI (configuration interaction) calculation shows the importance of the two-electron interaction in this system. This behaviour is confirmed by Green's function calculations that are employed to derive the ionization potentials (IPs) and the electron affinity of the C60 molecule. Pair-relaxation effects in the cationic hole-states lead to significant many-body corrections to calculated ...

[1]  M. Pederson,et al.  Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules. , 1992, Physical review. B, Condensed matter.

[2]  R. Kremer,et al.  The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity , 1993 .

[3]  Roald Hoffmann,et al.  Interaction of orbitals through space and through bonds , 1971 .

[4]  M. Böhm,et al.  Superconductivity in alkali-doped C60 fullerides , 1995 .

[5]  Rafael Ramírez,et al.  The use of symmetry in reciprocal space integrations. Asymmetric units and weighting factors for numerical integration procedures in any crystal symmetry , 1988 .

[6]  Michael C. Böhm,et al.  A CNDO/INDO crystal orbital model for transition metal polymers of the 3d series—basis equations , 1983 .

[7]  J. J. Grabowski,et al.  A precise determination of the triplet energy of carbon (C60) by photoacoustic calorimetry , 1991 .

[8]  Nevill Mott,et al.  Metal-insulator transitions , 1973 .

[9]  A. Rosén,et al.  Electronic transitions in C60. On the origin of the strong interstellar absorption at 217 nm , 1991 .

[10]  M. Böhm Electronic reorganization in the photoelectron spectra of transition metal compounds , 1983 .

[11]  R. Fleming,et al.  Synthesis and characterization of alkali metal fullerides: AxC60 , 1992 .

[12]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[13]  John C. Slater,et al.  Directed Valence in Polyatomic Molecules , 1931 .

[14]  George A. Sawatzky,et al.  Band gap, excitons, and Coulomb interaction in solid C60. , 1992 .

[15]  Lorenz S. Cederbaum,et al.  Computational methods for the one-particle green's function , 1984 .

[16]  Shin‐Tson Wu,et al.  Calculation of UV/VIS absorption spectra of liquid crystals and dye molecules An INDO MO approach , 1992 .

[17]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[18]  M. Böhm Common microscopic origin of superconductivity and unusual temperature dependence of the dc electrical conductivity in strongly correlated organic donor–acceptor salts , 1991 .

[19]  M. Böhm Solid-state electronic structures of intercalation compounds: The system Mg(Ti3S4)2 , 1988 .

[20]  M. Dewar,et al.  Ground states of conjugated molecules. IX. Hydrocarbon radicals and radical ions , 1968 .

[21]  I. László,et al.  A study of the UV spectrum of the truncated icosahedral C60 molecule , 1989 .

[22]  R. S. Mulliken Quelques aspects de la théorie des orbitales moléculaires , 1949 .

[23]  D. Cox,et al.  Structures of C60 intercalation compounds , 1992 .

[24]  G. Kochanski,et al.  Electrical resistivity and stoichiometry of KxC60, RbxC60, and CsxC60 films , 1994 .

[25]  Rafael Ramírez,et al.  A Crystal Orbital approach for two‐ and three‐dimensional solids on the basis of CNDO/INDO Hamiltonians. Basis equations , 1988 .

[26]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[27]  A. Freeman,et al.  Electronic structure, electron-phonon interaction and superconductivity in K3C60, Rb3C60 and Cs3C60 , 1992 .

[28]  Kenneth W. Nebesny,et al.  Valence and core photoelectron spectroscopy of C60, buckminsterfullerene , 1991 .

[29]  M. Zerner,et al.  Calculations on the electronic structure and spectroscopy of C60 and C70 cage structures , 1991 .

[30]  Michael C. Böhm,et al.  A CNDO/INDO molecular orbital formalism for the elements H to Br. theory , 1981 .

[31]  Horst Weiss,et al.  A direct algorithm for self‐consistent‐field linear response theory and application to C60: Excitation energies, oscillator strengths, and frequency‐dependent polarizabilities , 1993 .

[32]  Arnout Ceulemans,et al.  Electron Deficiency of the Fullerenes , 1995 .

[33]  M. Böhm,et al.  On the accuracy of fourier transformations in crystal orbitat approaches , 1985 .

[34]  Jepsen,et al.  Coulomb integrals and model Hamiltonians for C60. , 1992, Physical review. B, Condensed matter.

[35]  Robert H. Hauge,et al.  Heats of sublimation from a polycrystalline mixture of carbon clusters (C60 and C70) , 1991 .

[36]  Ritchie,et al.  Coulomb and exchange interactions in C60n- , 1993, Physical review. B, Condensed matter.

[37]  Zbigniew Gasyna,et al.  The magnetic circular dichroism and absorption spectra of C60 isolated in Ar matrices , 1991 .

[38]  R. Fleming,et al.  Increased transition temperature in superconducting Na2CsC60 by intercalation of ammonia , 1993, Nature.

[39]  R. Fleming,et al.  Preparation and structure of the alkali-metal fulleride A4C60 , 1991, Nature.

[40]  Zaanen,et al.  Electronic transport properties of K3C60 films. , 1992, Physical review letters.

[41]  Michael C. Böuhm A theoretical investigation of electron correlation and relaxation in organometallic polymers , 1985 .

[42]  T. Ebbesen,et al.  Lattice parameters of alkali-metal-doped C60 fullerides , 1993 .

[43]  Poul Jo rgensen Electronic Excitations of Open Shell Systems in the Grand Canonical and Canonical Time‐Dependent Hartree‐Fock Models. Applications on Hydrocarbon Radical Ions , 1972 .

[44]  M. Böhm Exceptional solid‐state properties of organic 2:1 donor–acceptor metals with integral charge transfer , 1991 .

[45]  G. Klopman,et al.  A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .

[46]  Stanley C. Miller,et al.  Tables of irreducible representations of space groups and co-representations of magnetic space groups , 1967 .

[47]  A. Haymet C120 and C60: Archimedean solids constructed from sp2 hybridized carbon atoms , 1985 .

[48]  Weaver,et al.  Electrical transport in Na, K, Rb, and Cs fullerides: Phase formation, microstructure, and metallicity. , 1993, Physical review. B, Condensed matter.

[49]  B. Santo,et al.  Solid State , 2012 .

[50]  S. Erwin,et al.  Theoretical Fermi-Surface Properties and Superconducting Parameters for K3C60 , 1991, Science.

[51]  R. Fleming,et al.  13C NMR Spectroscopy of KxC60: Phase Separation, Molecular Dynamics, and Metallic Properties , 1991, Science.

[52]  A. Oshiyama,et al.  Electronic and geometric structures of C70. , 1991, Physical review. B, Condensed matter.

[53]  P. A. Brühwiler,et al.  AUTOIONIZATION AND AUGER SPECTRA OF C60 FILMS: IMPLICATIONS FOR CHARGE SCREENING AND TRANSPORT , 1992 .

[54]  R. Fleming,et al.  Structural and electronic properties of sodium-intercalated C60 , 1992, Nature.

[55]  C. Rao,et al.  Synthesis of cuprate superconductors , 1993 .

[56]  J. Linderberg,et al.  Atomic Central-Field Models for Open Shells with Application to Transition Metals , 1972 .

[57]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[58]  R. Evarestov,et al.  Special points of the Brillouin zone and their use in the solid state theory , 1983 .

[59]  R. Hoffmann,et al.  Benzynes, dehydroconjugated molecules, and the interaction of orbitals separated by a number of intervening sigma bonds , 1968 .

[60]  M. Böhm,et al.  The band structure of Ni(H5C3B2). An example for energetic stabilization due to dimerization , 1986 .

[61]  J. Schulte,et al.  Many-particle effects in the calculation of ionization potentials and electron affinity of the C60 molecule , 1994 .

[62]  I. László,et al.  On the geometrical structure and UV spectrum of the truncated icosahedral C60, molecule , 1987 .

[63]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[64]  Horst Köppel,et al.  Theoretical study of the multimode Peierls distortion in the polydecker sandwich compound [Ni(H5C3B2)]∞ , 1993 .

[65]  Weaver,et al.  X-ray photoemission investigations of binary and ternary C60 fullerides of Na, K, Rb, and Cs. , 1993, Physical Review B (Condensed Matter).

[66]  Chen,et al.  C60 and C70 fullerenes and potassium fullerides. , 1992, Physical review. B, Condensed matter.

[67]  Martins,et al.  Electronic structure of neutral and charged C60 clusters. , 1992, Physical review. B, Condensed matter.

[68]  D. R. Hartree,et al.  The Calculation of Atomic Structure , 1958 .

[69]  R. Gleiter,et al.  A CNDO/INDO molecular orbital formalism for the elements H to Br. applications , 1981 .

[70]  Weaver,et al.  Electronic properties of K-doped C60(111): Photoemission and electron correlation. , 1993, Physical review. B, Condensed matter.

[71]  M. Gutzwiller,et al.  Correlation of Electrons in a Narrow s Band , 1965 .

[72]  J. P. Lu,et al.  Orientational correlations and order in A3C60 , 1993 .

[73]  Robert C. Haddon,et al.  Electronic structure, conductivity and superconductivity of alkali metal doped (C60) , 1992 .

[74]  Sydney Leach,et al.  Electronic spectra and transitions of the fullerene C60 , 1992 .

[75]  R. Haddon,et al.  Microwave study of superconductivity in alkali-metal-doped fullerene C60 films , 1992 .

[76]  Poirier Dm,et al.  KC60 fulleride phase formation : an x-ray photoemission study , 1993 .

[77]  Nevill Mott,et al.  Metal-insulator transitions , 1974 .

[78]  W. C. Ermler,et al.  Carbon molecule (C60) and its ions: electronic structure, ionization potentials, and excitation energies , 1991 .

[79]  J. Ladik,et al.  Quantum theory of polymers as solids , 1988 .

[80]  Weaver,et al.  Electron-diffraction and photoelectron-spectroscopy studies of fullerene and alkali-metal fulleride films. , 1993, Physical review. B, Condensed matter.

[81]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[82]  M. Böhm The parameter dependence of calculated koopmans'defects in the framework of a model hamiltonian verified in the case of transition metal compounds , 1982 .

[83]  M. Böhm,et al.  Charge distribution in K3C60 revisited: Incomplete alkali-to-C60 electron transfer , 1995 .

[84]  M. Böhm A simple extension of the external magnasco-perico localization procedure to the virtual MO-Space , 1981 .

[85]  Smith,et al.  Unusual thermal stability of a site-ordered MC60 rocksalt structure (M=K, Rb, or Cs). , 1993, Physical review. B, Condensed matter.

[86]  E. Heilbronner,et al.  A Quantitative Assessment of „Through‐space”︁ and „Through‐bond”︁ Interactions. Application to Semi‐empirical SCF Models , 1975 .

[87]  R. Gleiter,et al.  The photoelectron spectrum of bis(π-allyl)nickel. a comparison between semi-empirical and ab initio green's function methods , 1986 .

[88]  M. Böhm,et al.  An efficient technique for the evaluation of lattice sums in crystal orbital (CO) calculations , 1986 .

[89]  S. Satpathy Electronic structure of the truncated-icosahedral C60 cluster , 1986 .

[90]  Michael J. S. Dewar,et al.  The SPO (Split p‐Orbital) Method and Its Application to Ethylene , 1961 .

[91]  Chen,et al.  Electronic structure of solid C60: Experiment and theory. , 1991, Physical review letters.

[92]  Huang,et al.  First-principles calculation of optical properties of C60 in the fcc lattice. , 1991, Physical review letters.

[93]  C. Lin,et al.  Self-interaction correction for density-functional theory of electronic energy bands of solids , 1983 .

[94]  C. A. Coulson,et al.  Note on the method of molecular orbitals , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[95]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[96]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[97]  P. V. R. Schleyer,et al.  Sind polare Organometallverbindungen “Carbanionen”? Der Einfluß des Gegenions auf Struktur und Energie von Organoalkalimetallverbindungen , 1994 .