A polytree-based adaptive approach to limit analysis of cracked structures

Abstract We in this paper present a novel adaptive finite element scheme for limit analysis of cracked structures. The key idea is to develop a general refinement algorithm based on a so-called polytree mesh structure. The method is well suited for arbitrary polygonal elements and furthermore traditional triangular and quadrilateral ones, which are considered as special cases. Also, polytree meshes are conforming and can be regarded as a generalization of quadtree meshes. For the aim of this paper, we restrict our main interest in plane-strain limit analysis to von Mises-type materials, yet its extension to a wide class of other solid mechanics problems and materials is completely possible. To avoid volumetric locking, we propose an approximate velocity field enriched with bubble functions using Wachspress coordinates on a primal-mesh and design carefully strain rates on a dual-mesh level. An adaptive mesh refinement process is guided by an L 2 -norm-based indicator of strain rates. Through numerical validations, we show that the present method reaches high accuracy with low computational cost. This allows us to perform large-scale limit analysis problems favorably.

[1]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[2]  Josiah Manson,et al.  Moving Least Squares Coordinates , 2010, Comput. Graph. Forum.

[3]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[5]  H. Nguyen-Xuan,et al.  Adaptive selective ES-FEM limit analysis of cracked plane-strain structures , 2015 .

[6]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[7]  Nestor Zouain,et al.  A directional error estimator for adaptive limit analysis , 1999 .

[8]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[9]  Elisabeth Anna Malsch,et al.  Shape functions for polygonal domains with interior nodes , 2004 .

[10]  A modified upper bound approach to limit analysis for plane strain deeply cracked specimens , 2007 .

[11]  Shi-Min Hu,et al.  Poisson Coordinates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[12]  Chris Martin,et al.  Upper bound limit analysis using simplex strain elements and second‐order cone programming , 2007 .

[13]  Raúl A. Feijóo,et al.  An adaptive approach to limit analysis , 2001 .

[14]  Stéphane Bordas,et al.  Numerically determined enrichment functions for the extended finite element method and applications to bi‐material anisotropic fracture and polycrystals , 2010 .

[15]  Héctor,et al.  Computation of upper and lower bounds in limit analysis using second-order cone programming and mesh adaptivity , 2004 .

[16]  M. Gilbert,et al.  A locking-free stabilized kinematic EFG model for plane strain limit analysis , 2012 .

[17]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[18]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[19]  Jonathan A. Dantzig,et al.  An adaptive mesh refinement scheme for solidification problems , 1996 .

[20]  John Lin,et al.  Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.

[21]  H. Nguyen-Dang,et al.  Limit analysis of cracked structures by mathematical programming and finite element technique , 1999 .

[22]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[23]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[24]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[25]  Jaime Peraire,et al.  Mesh adaptive computation of upper and lower bounds in limit analysis , 2008 .

[26]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[27]  K. Y. Sze,et al.  Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics , 2005 .

[28]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[29]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[30]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[31]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[32]  Yun-Jae Kim,et al.  Plastic limit pressures for cracked pipes using finite element limit analyses , 2002 .

[33]  Matthew G. Knepley,et al.  PetFMM—A dynamically load‐balancing parallel fast multipole library , 2009, ArXiv.

[34]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[35]  A. G. Miller,et al.  Review of limit loads of structures containing defects , 1988 .

[36]  Chris Martin,et al.  Critical Skirt Spacing for Shallow Foundations under General Loading , 2013 .

[37]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[38]  Alireza Tabarraei,et al.  Adaptive computations on conforming quadtree meshes , 2005 .

[39]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[40]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[41]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[42]  Shi-Min Hu,et al.  Cubic mean value coordinates , 2013, ACM Trans. Graph..

[43]  C. E. Richards,et al.  The yield-point loads of singly-notched pin-loaded tensile strips , 1974 .

[44]  Glaucio H. Paulino,et al.  Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics , 2016 .

[45]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[46]  Chris Martin,et al.  Undrained collapse of a shallow plane-strain trapdoor , 2009 .

[47]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[48]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[49]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[50]  Scott W. Sloan,et al.  Lower bound limit analysis with adaptive remeshing , 2005 .

[51]  Antonio Huerta,et al.  Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading , 2009 .

[52]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[53]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[54]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[55]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[56]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[57]  H. Nguyen-Xuan,et al.  A variationally consistent αFEM (VCαFEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements , 2011 .

[58]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[59]  E. M. Morozov,et al.  Elastic-plastic fracture mechanics , 1978 .

[60]  Kokichi Sugihara,et al.  Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..

[61]  Canh V. Le,et al.  Yield-stress based error indicator for adaptive quasi-static yield design of structures , 2016 .

[62]  Glaucio H. Paulino,et al.  Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements , 2014 .

[63]  Hung Nguyen-Xuan,et al.  An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis , 2015 .

[64]  Edmund Christiansen,et al.  Automatic mesh refinement in limit analysis , 1999 .

[65]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[66]  R. Batra,et al.  An adaptive mesh refinement technique for the analysis of shear bands in plane strain compression of a thermoviscoplastic solid , 1992 .

[67]  C. Le A stabilized discrete shear gap finite element for adaptive limit analysis of Mindlin–Reissner plates , 2013 .

[68]  Hung Nguyen-Xuan,et al.  An adaptive selective ES-FEM for plastic collapse analysis , 2016 .

[69]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[70]  Antonio Capsoni,et al.  A FINITE ELEMENT FORMULATION OF THE RIGID–PLASTIC LIMIT ANALYSIS PROBLEM , 1997 .

[71]  Chris Martin The use of adaptive finite-element limit analysis to reveal slip-line fields , 2011 .

[72]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[73]  Michael S. Floater,et al.  Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..

[74]  S. Sloan Geotechnical stability analysis , 2013 .

[75]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[76]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[77]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .