The ROSAT-ESO Flux-Limited X-ray (REFLEX) galaxy cluster survey - II. The spatial correlation function

We report the results of the spatial two-point correlation functioncc(r) for the new X- ray galaxy cluster survey REFLEX, which comprises of 452 X-ray selected clusters (449 with redshifts) detected by the ROSAT satellite during the ROSAT All-Sky-Survey (RASS). The REFLEX cluster sample is flux limited to 3 × 10 12 erg s 1 cm 2 in the ROSAT energy band (0.1 − 2.4 keV) and spans 3 decades in X-ray luminosity (10 42 −10 45 h 2 erg s 1 ), containing galaxy groups and rich clusters out to a redshift z ≤ 0.3. Covering a contiguous area of 4.24 sr REFLEX is the largest X-ray cluster sample to date for which spatial clustering has been analysed. Correlation studies using clusters selected on the basis of their X-ray emission are particularly interesting as they are largely free from the projection biases inherent to optical studies. For the entire flux-limited sample we find that the correlation length (the scale at which the correlation amplitude passes through unity) r0 ≃ 20h 1 Mpc. For example, if a power-law fit is made to �(r) over the range 4 − 40h 1 Mpc then r0 = 18.8 ± 0.9. An indication of the robustness of this result comes from the high degree of isotropy seen in the clustering pattern on scales close to the correlation length. On larger scalescc(r) deviates from a power-law, crossing zero at ≃ 45h 1 Mpc. From an examination of 5 volume-limited cluster sub-samples we find no significant trend of r0 with limiting X-ray luminosity. A comparison with recent model predictions for the clustering properties of X-ray flux-limited samples, indicates that Cold Dark Matter models with the matter density m = 1 fail to produce sufficient clustering to account for the data, while m ≃ 0.3 models provide an excellent fit.

[1]  R. Arlt,et al.  Detailed visual observations and modelling of the 1998 Leonid shower , 2000 .

[2]  P. Maxted,et al.  Radial velocity measurements of white dwarfs , 2000, astro-ph/0007129.

[3]  L. Moscardini,et al.  Predicting the clustering of X-ray selected galaxy clusters in flux-limited surveys , 1999, astro-ph/9909273.

[4]  D. Batuski,et al.  Projection, Spatial Correlations, and Anisotropies in a Large and Complete Sample of Abell Clusters , 1999, astro-ph/9906414.

[5]  R. Nichol,et al.  The Bright SHARC Survey: The X-Ray Cluster Luminosity Function , 1999, astro-ph/9906163.

[6]  L. Moscardini,et al.  The correlation function of X-ray galaxy clusters in the ROSAT All-Sky Survey 1 Bright Sample , 1999, astro-ph/9904282.

[7]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[8]  S. Borgani,et al.  Cosmological Constraints from the ROSAT Deep Cluster Survey , 1999, astro-ph/9901017.

[9]  S. Borgani,et al.  Cosmological constraints from the clustering properties of the X-ray Brightest Abell-type Cluster sample , 1998, astro-ph/9812417.

[10]  L. Guzzo,et al.  The X-Ray Luminosity Function of Bright Galaxy Clusters in the Local Universe , 1998, astro-ph/9812423.

[11]  L. Guzzo,et al.  Probing the Cosmic Large-Scale Structure with the REFLEX Cluster Survey : Profile of an ESO Key Programme , 1998, astro-ph/9809382.

[12]  D. Lambas,et al.  Correlation Length of X-Ray-Brightest Abell Clusters , 1998, astro-ph/9806274.

[13]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[14]  R. Della Ceca,et al.  The ROSAT Deep Cluster Survey: The X-Ray Luminosity Function out to z = 0.8 , 1997, astro-ph/9710308.

[15]  J. Henry A Measurement of the Density Parameter Derived from the Evolution of Cluster X-Ray Temperatures , 1997 .

[16]  Ray M. Sharples,et al.  The Southern SHARC Survey: the z = 0.3-0.7 Cluster X-Ray Luminosity Function , 1997 .

[17]  Cambridge,et al.  An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies , 1997, astro-ph/9707269.

[18]  G. Chincarini,et al.  The Steepness Ratio Technique: A New Method to Analyze ROSAT All-Sky Survey Extended Sources , 1997, astro-ph/9706155.

[19]  R. Nichol,et al.  On the Evolution of X-Ray Clusters at High Redshift , 1997, astro-ph/9701143.

[20]  S. Maddox,et al.  The richness dependence of galaxy cluster correlations: Results from a redshift survey of rich APM clusters. , 1997, astro-ph/9701040.

[21]  Jr.,et al.  The Las Campanas Redshift Survey galaxy—galaxy autocorrelation function , 1996, astro-ph/9611206.

[22]  J. Huchra,et al.  Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample , 1996, astro-ph/9602080.

[23]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[24]  H. Macgillivray,et al.  The large-scale distribution of X-ray clusters of galaxies , 1994, Nature.

[25]  S. Maddox,et al.  The two-point correlation function of rich clusters of galaxies: results from an extended APM cluster redshift survey , 1994, astro-ph/9407076.

[26]  R. Croft,et al.  The correlation function of rich clusters of galaxies in CDM-like models , 1993, astro-ph/9310017.

[27]  A. Klypin,et al.  The zero-point of the cluster cluster correlation function , 1993, astro-ph/9309034.

[28]  J. Huchra,et al.  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – I. The redshift and real space correlation functions , 1993, astro-ph/9307001.

[29]  W. Forman,et al.  A catalog of intracluster gas temperatures , 1993 .

[30]  J. Trümper ROSAT--A New Look at the X-ray Sky. , 1993, Science.

[31]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[32]  A. Hamilton Omega from the anisotropy of the redshift correlation function , 1993 .

[33]  John A. Peacock,et al.  The power spectrum of Abell cluster correlations , 1992 .

[34]  M. Rowan-Robinson,et al.  The spatial correlation function of IRAS galaxies on small and intermediate scales , 1992 .

[35]  S. Maddox,et al.  The correlation function of rich clusters of galaxies: a comparison of APM and Abell clusters , 1992 .

[36]  Y. Jing,et al.  On the error estimates of correlation functions , 1992 .

[37]  S. Maddox,et al.  Spatial correlations in a redshift survey of APM galaxy clusters , 1992 .

[38]  R. Nichol,et al.  The Edinburgh–Durham Southern Galaxy Catalogue – V. The cluster correlation function , 1992 .

[39]  Carl Heiles,et al.  The bell laboratories H I survey , 1992 .

[40]  M. Postman,et al.  The distribution of nearby rich clusters of galaxies , 1992 .

[41]  Correlation functions of rich clusters of galaxies , 1991 .

[42]  Sandra M. Faber,et al.  Potential, velocity and density fields from sparse and noisy redshift distance samples: Method , 1990 .

[43]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[44]  O. Lahav,et al.  The spatial distribution of X-ray clusters of galaxies , 1989 .

[45]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[46]  W. Sutherland The 3-D Distribution of Abell Clusters , 1988 .

[47]  Neta A. Bahcall,et al.  Large-Scale Structure in the Universe Indicated by Galaxy Clusters , 1988 .

[48]  J. Mariska Solar Transition Region and Coronal Response to Heating Rate Perturbations , 1987 .

[49]  T. Duvall,et al.  Acoustic Absorption by Sunspots , 1987 .

[50]  W. Burgett,et al.  Peculiar velocity and geometrical elongation of large-scale structures , 1986 .

[51]  C. Frenk,et al.  Uncertainties in the cluster-cluster correlation function. , 1986 .

[52]  J. Lucey An assessment of the completeness and correctness of the Abell catalogue , 1983 .

[53]  Neta A. Bahcall,et al.  The Spatial correlation function of RICH clusters of galaxies , 1983 .

[54]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[55]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[56]  G. Abell The Distribution of rich clusters of galaxies , 1958 .