Mass Ratio of Electrodynamic Tether to Spacecraft on Deorbit Stability and Efficiency

[1]  Luciano Iess,et al.  Small Mission Design for Testing In-Orbit an Electrodynamic Tether Deorbiting System , 2006 .

[2]  S. Khan,et al.  Optimum sizing of bare-tape tethers for de-orbiting satellites at end of mission , 2015 .

[3]  Shaker A. Meguid,et al.  Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit , 2016 .

[4]  Noboru Takeichi,et al.  Practical Operation Strategy for Deorbit of an Electrodynamic Tethered System , 2006 .

[5]  Claudio Bombardelli,et al.  Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits , 2013 .

[6]  Vinod J. Modi,et al.  Effect of electrodynamic forces on the orbital dynamics of tethered satellites , 2005 .

[7]  N. Johnson,et al.  Risks in Space from Orbiting Debris , 2006, Science.

[8]  Toshiya Hanada,et al.  Benefits and risks of using electrodynamic tethers to de-orbit spacecraft , 2006 .

[9]  Manuel Martinez-Sanchez,et al.  Electrodynamic Tether Applications and Constraints , 2010 .

[10]  Jesus Pelaez,et al.  Generator Regime of Self-Balanced Electrodynamic Bare Tethers , 2006 .

[11]  Zheng H. Zhu,et al.  Long-Term Libration Dynamics and Stability Analysis of Electrodynamic Tethers in Spacecraft Deorbit , 2014 .

[12]  Franz Newland,et al.  Libration Control of Bare Electrodynamic Tethers Considering Elastic–Thermal–Electrical Coupling , 2016 .

[13]  Zheng H. Zhu,et al.  Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration , 2015 .