Splines over regular triangulations in numerical simulation
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Francesca Pelosi | Carlotta Giannelli | Maria Lucia Sampoli | H. Speleers | C. Manni | Carlotta Giannelli | F. Pelosi | M. Sampoli
[1] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[2] Xiaoping Qian,et al. Isogeometric analysis on triangulations , 2014, Comput. Aided Des..
[3] C. D. Boor,et al. Box splines , 1993 .
[4] Robert Haimes,et al. Initiating a CAD renaissance: Multidisciplinary analysis driven design: Framework for a new generation of advanced computational design, engineering and manufacturing environments , 2015 .
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] Jiansong Deng,et al. Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..
[7] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[8] H. Speleers. Inner products of box splines and their derivatives , 2015 .
[9] T. Lyche,et al. Box Splines and Applications , 1991 .
[10] Daniel A. Williams,et al. Box‐spline–based approach to the formulation of numerical methods for partial differential equations , 1992 .
[11] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[12] Hendrik Speleers,et al. From NURBS to NURPS geometries , 2013 .
[13] Alessandro Reali,et al. Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .
[14] Xiaoping Qian,et al. Continuity and convergence in rational triangular Bézier spline based isogeometric analysis , 2015 .
[15] Klaus Höllig,et al. Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods , 2010, Curves and Surfaces.
[16] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[17] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[18] Jörg Peters,et al. Fast and stable evaluation of box-splines via the BB-form , 2009, Numerical Algorithms.
[19] Hendrik Speleers,et al. A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .
[20] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[21] Leif Kobbelt. Stable evaluation of box‐splines , 2004, Numerical Algorithms.
[22] Hendrik Speleers,et al. Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..
[23] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[24] Bert Jüttler,et al. Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .
[25] C. Micchelli,et al. Recent Progress in multivariate splines , 1983 .
[26] Alessandro Reali,et al. Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .
[27] Régis Duvigneau,et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..
[28] Bert Jüttler,et al. Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..
[29] Ramon Codina,et al. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .
[30] Carl de Boor,et al. On the evaluation of box splines , 2005, Numerical Algorithms.
[31] Bert Jüttler,et al. Characterization of bivariate hierarchical quartic box splines on a three-directional grid , 2016, Comput. Aided Geom. Des..