Splines over regular triangulations in numerical simulation

Abstract We investigate the use of smooth spline spaces over regular triangulations as a tool in (isogeometric) Galerkin methods. In particular, we focus on box splines over three-directional meshes. Box splines are multivariate generalizations of univariate cardinal B-splines sharing the same properties. Tensor-product B-splines with uniform knots are a special case of box splines. The use of box splines over three-directional meshes has several advantages compared with tensor-product B-splines, including enhanced flexibility in the treatment of the geometry and stiffness matrices with stronger sparsity. Boundary conditions are imposed in a weak form to avoid the construction of special boundary functions. We illustrate the effectiveness of the approach by means of a selection of numerical examples.

[1]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[2]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[3]  C. D. Boor,et al.  Box splines , 1993 .

[4]  Robert Haimes,et al.  Initiating a CAD renaissance: Multidisciplinary analysis driven design: Framework for a new generation of advanced computational design, engineering and manufacturing environments , 2015 .

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Jiansong Deng,et al.  Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..

[7]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[8]  H. Speleers Inner products of box splines and their derivatives , 2015 .

[9]  T. Lyche,et al.  Box Splines and Applications , 1991 .

[10]  Daniel A. Williams,et al.  Box‐spline–based approach to the formulation of numerical methods for partial differential equations , 1992 .

[11]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[12]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[13]  Alessandro Reali,et al.  Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .

[14]  Xiaoping Qian,et al.  Continuity and convergence in rational triangular Bézier spline based isogeometric analysis , 2015 .

[15]  Klaus Höllig,et al.  Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods , 2010, Curves and Surfaces.

[16]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[17]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[18]  Jörg Peters,et al.  Fast and stable evaluation of box-splines via the BB-form , 2009, Numerical Algorithms.

[19]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[20]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[21]  Leif Kobbelt Stable evaluation of box‐splines , 2004, Numerical Algorithms.

[22]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[23]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[24]  Bert Jüttler,et al.  Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .

[25]  C. Micchelli,et al.  Recent Progress in multivariate splines , 1983 .

[26]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[27]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[28]  Bert Jüttler,et al.  Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..

[29]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[30]  Carl de Boor,et al.  On the evaluation of box splines , 2005, Numerical Algorithms.

[31]  Bert Jüttler,et al.  Characterization of bivariate hierarchical quartic box splines on a three-directional grid , 2016, Comput. Aided Geom. Des..