Geochemistry of Triassic Carbonates: Exploration Guide to Pb–Zn Mineralization in North Tunisia

The Triassic carbonate rocks in Northern Tunisia (Nappes, Domes, Jurassic Mountains zones), consist of massive carbonates, clays and gypsum with authigenic minerals. These are associated with several Pb–Zn deposits and occurrences. At Jebel Ichkeul, Bechateur and Oum Edeboua, these Triassic carbonates exhibit enrichment in Pb (0.32 to 228 ppm), Zn (17 to 261 ppm), Cd (5 to 6 ppm) and Co (0.3 to 89.5 ppm), with respect to their average contents in crustal carbonates. The enrichment is more pronounced at Oum Edeboua (near the ore zone). Permeability is one of the most effective factors of dispersion of metallic trace elements, causing the development of geochemical halos. The genetic relationship of the Triassic carbonate rocks with the ore deposits was controlled by diapirism and tectonic movements, which favored mineralization along the Triassic‐cover contact as well as the remobilization of metals from the mineralized rocks. Analysis of metallic trace elements in Triassic rocks provides clues to the presence of possible mineral deposits. These could be effectively used for both geochemical interpretation and mineral exploration. Carbon and O‐isotope data (– 9.3‰ < δ13C < +3‰; +21.9 < δ18O < +31‰) suggest that the Triassic carbonates of all study areas have marine carbonates as their origin; some of them show significantly lower δ18O values indicating some exchange with hydrothermal fluids. Calcites associated with mineralization at Oum Edeboua have δ13C of –6.2‰ to –8.22‰ and δ18O of +24.88‰ to +25‰. The C‐isotope compositions of these calcites are 13C depleted, indicating an organic origin.

[1]  A. Strauss Geochemistry In Mineral Exploration , 2016 .

[2]  E. Carranza,et al.  Geochemical constraints on the genesis of the Pb–Zn deposit of Jalta (northern Tunisia): implications for timing of mineralization, sources of metals and relationship to the Neogene volcanism , 2014 .

[3]  J. Dandurand,et al.  REE and isotope (Sr, S, and Pb) geochemistry to constrain the genesis and timing of the F–(Ba–Pb–Zn) ores of the Zaghouan District (NE Tunisia) , 2013 .

[4]  E. Carranza,et al.  Sulfur and lead isotopes of Guern Halfaya and Bou Grine deposits (Domes zone, northern Tunisia): Implications for sources of metals and timing of mineralization , 2013 .

[5]  E. Carranza,et al.  Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb–Zn (As–Cu–Hg–Sb) deposits, Northern Tunisia , 2013 .

[6]  E. Carranza,et al.  Mineralogical and Geochemical Constraints on the Genesis of the Carbonate‐Hosted Jebel Ghozlane Pb–Zn Deposit (Nappe Zone, Northern Tunisia) , 2013 .

[7]  E. Carranza,et al.  Metal sources and timing of Pb-Zn deposits associated to salt dome cap rocks in northwest Tunisia: evidence from isotope (Pb,S) geochemistry , 2013 .

[8]  B. Mehrabi,et al.  Effects of host rock mineralogical composition and sedimentary facies on development of geochemical halos in Shahmirzad Pb-Zn deposits, central Alborz, Iran , 2013 .

[9]  E. Carranza,et al.  Genesis of the Jurassic Carbonate‐Hosted Pb–Zn Deposits of Jebel Ressas (North‐Eastern Tunisia): Evidence from Mineralogy, Petrography and Trace Metal Contents and Isotope (O, C, S, Pb) Geochemistry , 2011 .

[10]  I. Villa,et al.  Ore genesis of Pb–Zn deposits in the Nappe zone of Northern Tunisia: Constraints from Pb–S–C–O isotopic systems , 2011 .

[11]  F. Zargouni,et al.  Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia , 2011 .

[12]  G. Dipple,et al.  Defining trace-element alteration halos to skarn deposits hosted in heterogeneous carbonate rocks: Case study from the Cu–Zn Antamina skarn deposit, Peru , 2010 .

[13]  J. Dandurand,et al.  Fluid inclusion microthermometry and rare earth element distribution in the celestites of the Jebel Doghra ore deposit (Dome Zone, northern Tunisia): towards a new genetic model , 2007 .

[14]  R. Swennen,et al.  Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada , 2007 .

[15]  G. Garven,et al.  Sediment-hosted lead-zinc deposits: A global perspective , 2005 .

[16]  C. Spötl,et al.  Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. , 2003, Rapid communications in mass spectrometry : RCM.

[17]  S. Bouaziz,et al.  Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record , 2002 .

[18]  R. Large,et al.  Carbon and Oxygen Isotope Halo in Carbonates Related to the McArthur River (HYC) Zn-Pb-Ag Deposit, North Australia:Implications for Sedimentation, Ore Genesis, and Mineral Exploration , 2001 .

[19]  Z. Sharp,et al.  Origin of vein hydrothermal carbonates in triassic limestones of the Espadán Ranges (Iberian Chain, E Spain) , 2001 .

[20]  Stuart W. Bull,et al.  Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn–Pb–Ag deposits: Part 2. HYC deposit, McArthur River, Northern Territory , 2000 .

[21]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[22]  R. Large,et al.  Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn–Pb–Ag deposits, 1. Lady Loretta Deposit, Queensland , 1998 .

[23]  J. Orgeval Peridiapiric Metal Concentration: Example of the Bou Grine Deposit (Tunisian Atlas) , 1994 .

[24]  R. Alouani,et al.  Les unités allochtones métamorphiques de l'axe des Jebels Hairech et Ichkeul : position structurale et signigication géodynamique dans le nord de la Tunisie , 1991 .

[25]  Neji Halloul Geologie, petrologie et geochimie du bimagmatisme neogene de la tunisie septentrionale (nefza et mogod) : implications petrogenetiques et interpretation geodynamique , 1989 .

[26]  H. Hemadi Les silicates et carbonates authigènes de diapirs du Nord de la Tunisie : signification chimique et thermique , 1987 .

[27]  A. Mansouri,et al.  Pb-Zn deposits and salt-bearing diapirs in Southern Europe and North Africa , 1985 .

[28]  V. Perthuisot Diapirism in Northern Tunisia , 1981 .

[29]  E. Stumpfl Manganese haloes surrounding metamorphic stratabound base metal deposits , 1979 .

[30]  H. Bellon,et al.  Ages radiometriques (K/Ar) de feldspaths potassiques et de micas neoformes dans le Trias de Tunisie septentrionale , 1977 .

[31]  J. Veizer,et al.  The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks , 1976 .

[32]  P. Sainfeld Les gites plombo-zincifères de Tunisie Atlas , 1952 .