Bipolar orientations Revisited

Abstract Acyclic orientations with exactly one source and one sink — the so-called bipolar orientations-arise in many graph algorithms and specially in graph drawing. The fundamental properties of these orientations are explored in terms of circuits, cocircuits and also in terms of “angles” in the planar case. Classical results get here new simple proofs; new results concern the extension of partial orientations, exhaustive enumerations, the existence of deletable and contractable edges, and continuous transitions between bipolar orientations.

[1]  Michel Las Vergnas,et al.  Orientability of matroids , 1978, J. Comb. Theory B.

[2]  Ioannis G. Tollis,et al.  Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..

[3]  Michel Las Vergnas,et al.  Acyclic and totally cyclic orientations of combinatorial geometries , 1977, Discret. Math..

[4]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[5]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[6]  Pierre Rosenstiehl Embedding in the Plane With Orientation Constraints: The Angle Graph , 1989 .

[7]  J. Sheehan GRAPH THEORY (Encyclopedia of Mathematics and Its Applications, 21) , 1986 .

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[10]  J. Pach,et al.  Representation of planar graphs by segments , 1994 .

[11]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[12]  Frank Harary,et al.  Graph Theory , 2016 .

[13]  P. A. Grillet Maximal chains and antichains , 1969 .

[14]  W. T. Tutte Graph Theory , 1984 .

[15]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.

[16]  O. Ore Theory of Graphs , 1962 .

[17]  Jean-Pierre Roudneff Inseparability graphs of oriented matroids , 1989, Comb..

[18]  Patrice Ossona de Mendez,et al.  Planarity and Edge Poset Dimension , 1996, Eur. J. Comb..

[19]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[20]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[21]  Elefterie Olaru,et al.  Zur Theorie der perfekten Graphen , 1977, J. Comb. Theory, Ser. B.

[22]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[23]  Marc Bousset Orientation d'un schema par passage d'un flot dans les angles , 1993 .

[24]  B. Monjardet,et al.  Ordres "C.A.C." , 1973 .

[25]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[26]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[27]  G. Kant Algorithms for drawing planar graphs , 1993 .

[28]  Uzi Vishkin,et al.  Parallel Ear Decomposition Search (EDS) and st-Numbering in Graphs , 1986, Theor. Comput. Sci..

[29]  Jeffrey Scott Vitter,et al.  Parallel Transitive Closure and Point Location in Planar Structures , 1991, SIAM J. Comput..

[30]  Ioannis G. Tollis,et al.  Algorithms for automatic graph drawing: an annotated bibliography , 1994 .