Polymeric insulation for high-voltage dc extruded cables: challenges and development directions

High-voltage DC (HVDC) power transmission plays a key role in the global power grid today and will continue to play a key role in the future, particularly for high-voltage, largecapacity, long-distance power transmission and regional power grid interconnection [1]. HVDC was first developed in the 1930s as a reliable technology that can effectively convert AC electricity produced at the point of generation to DC electricity for transmission. In 1954 the world’s first commercial HVDC project connected the Swedish mainland and the Island of Gotland with a ±100 kV mass-impregnated cable with a power rating of 20 MW [2], [3]. Since the 1960s the number of HVDC systems has grown rapidly with the maturation of thyristor and transistor technologies. Two main technologies were developed in the past half century:

[1]  Masaru Watanabe,et al.  Practical Application of ±250‐kV DC‐XLPE Cable for Hokkaido–Honshu HVDC Link , 2015 .

[2]  Xingyi Huang,et al.  Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[3]  Y. Ohki,et al.  Development of XLPE-insulated cable for high-voltage dc ubmarine transmission line (1) [News from Japn] , 2013 .

[4]  T. Lewis Nanometric dielectrics , 1994 .

[5]  Y. Yamano,et al.  Increase in breakdown strength of PE film by additives of azocompounds , 1998 .

[6]  B. Du,et al.  Improved ampacity of buried HVDC cable with high thermal conductivity LDPE/BN insulation , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[7]  R. N. Hampton,et al.  The role of degassing in XLPE power cable manufacture , 2006, IEEE Electrical Insulation Magazine.

[8]  Nicholas Quirke,et al.  Molecular modeling of electron trapping in polymer insulators , 2000 .

[9]  Rongsheng Liu,et al.  Long-distance DC electrical power transmission , 2013, IEEE Electrical Insulation Magazine.

[10]  Shengtao Li,et al.  Trap-controlled charge decay and quantum chemical analysis of charge transfer and trapping in XLPE , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[11]  Mario Benedetti,et al.  New high-performance thyristor gate control set for line-commutated converters , 1999, IEEE Trans. Ind. Electron..

[12]  Jung-Ki Park,et al.  Space charge and electrical conduction in Maleic Anhydride-grafted polyethylene , 1995, IEEE Transactions on Dielectrics and Electrical Insulation.

[13]  B. Du,et al.  Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites , 2017, Scientific Reports.

[14]  S. Boggs,et al.  Design considerations for high voltage DC components , 2012, IEEE Electrical Insulation Magazine.

[15]  S. Gubanski,et al.  High electron affinity: a guiding criterion for voltage stabilizer design , 2015 .

[16]  J. K. Nelson,et al.  Nanocomposite dielectrics—properties and implications , 2005 .

[17]  Jun Hu,et al.  Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications , 2015, IEEE Transactions on Dielectrics and Electrical Insulation.

[18]  Xingyi Huang,et al.  A review of dielectric polymer composites with high thermal conductivity , 2011, IEEE Electrical Insulation Magazine.

[19]  T. Maeno,et al.  Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene , 2005, IEEE transactions on dielectrics and electrical insulation.

[20]  S. Gubanski,et al.  Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles. , 2016, ACS applied materials & interfaces.

[21]  T. Takada,et al.  Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[22]  J. Hjerrild,et al.  Effect of Insulation Properties on the Field Grading of Solid Dielectric DC Cable , 2001, IEEE Power Engineering Review.

[23]  Rainer Patsch,et al.  On tree-inhibition in polyethylene , 1979, 1978 IEEE International Conference on Electrical Insulation.

[24]  U. Gedde,et al.  Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE. , 2016, Nano letters.

[25]  B. Dang,et al.  Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics , 2016 .

[26]  High Field Electrical Conduction in the Nanocomposite of Low-density Polyethylene and Nano-SiOx , 2006 .

[27]  Petru Notingher,et al.  Review of space charge measurements in high voltage DC extruded cables by the thermal step method , 2017, IEEE Electrical Insulation Magazine.

[28]  George Chen,et al.  Review of high voltage direct current cables , 2015 .

[29]  C. Lee,et al.  Control of space charge in polyethylene by chemical modification , 1996, Conference on Electrical Insulation and Dielectric Phenomena.

[30]  Y. Yamano Roles of polycyclic compounds in increasing breakdown strength of LDPE film , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[31]  Kazutoshi Abe,et al.  Development of High Voltage DC-XLPE Cable System , 2013 .

[32]  Y. Ohki,et al.  Proposal of a multi-core model for polymer nanocomposite dielectrics , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[33]  C. W. Reed,et al.  An assessment of material selection for high voltage DC extruded polymer cables , 2017, IEEE Electrical Insulation Magazine.

[34]  Giovanni Mazzanti,et al.  Extruded Cables For High-Voltage Direct-Current Transmission , 2013 .

[35]  A. C. Ashcraft,et al.  Laboratory studies of treeing in solid dielectrics and voltage stabilization of polyethylene , 1976, 1976 IEEE International Conference on Electrical Insulation.

[36]  Y. Murata,et al.  DC conduction and electrical breakdown of MgO/LDPE nanocomposite , 2007, 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena.

[37]  Nicholas Quirke,et al.  Molecular modeling of electron traps in polymer insulators: Chemical defects and impurities , 2001 .

[38]  Gian Carlo Montanari,et al.  Next generation polymeric high voltage direct current cables—A quantum leap needed? , 2018, IEEE Electrical Insulation Magazine.

[39]  Villgot Englund,et al.  Tailored side‐chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross‐linked polyethylene , 2014 .

[40]  Y. Sekii,et al.  Research and Development of XLPE Insulated DC Cable , 1992 .

[41]  Edward A. Cherney,et al.  Nanodielectrics applications-today and tomorrow , 2013, IEEE Electrical Insulation Magazine.

[42]  X. Chen,et al.  Effect of voltage reversal on space charge and transient field in LDPE films under temperature gradient , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[43]  A. Campus,et al.  Deep trapping centers in crosslinked polyethylene investigated by molecular modeling and luminescence techniques , 2001 .

[44]  G. Montanari,et al.  Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[45]  J. Crine,et al.  A critical evaluation of analytical. techniques for the characterization of extruded dielectric cables , 1991 .

[46]  B. Dang,et al.  Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride , 2016 .

[47]  G. Teyssedre,et al.  From LDPE to XLPE: Investigating the change of electrical properties. Part II. luminescence , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[48]  B. Dang,et al.  Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[49]  S. Roy,et al.  Correlating conductivity and space charge measurements in multi-dielectrics under various electrical and thermal stresses , 2015, IEEE Transactions on Dielectrics and Electrical Insulation.

[50]  T. Tanaka,et al.  Advances in nanodielectric materials over the past 50 years , 2013, IEEE Electrical Insulation Magazine.

[51]  Villgot Englund,et al.  A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation , 2015, Advanced materials.

[52]  Xingyi Huang,et al.  Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability , 2017 .

[53]  G. Teyssedre,et al.  Charge transport modeling in insulating polymers: from molecular to macroscopic scale , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[54]  T. Lewis Interfaces are the dominant feature of dielectrics at the nanometric level , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[55]  K. W. Barber,et al.  A general review of polymeric insulation for use in HVDC cables , 2003 .

[56]  A. Hoang,et al.  Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al2O3 nanocomposites for HVDC cable insulations , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[57]  H. Miyake,et al.  Observation of space charge accumulation behavior in cross-linked polyethylene at voltage polarity reversal , 2015, 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP).

[58]  Giovanni Mazzanti Space charge measurements in high voltage DC extruded cables in IEEE Standard 1732 , 2017, IEEE Electrical Insulation Magazine.

[59]  Xiaohong Zhang,et al.  Electrical tree propagating characteristics of polyethylene/nano-montmorillonite composites , 2015, IEEE Transactions on Dielectrics and Electrical Insulation.

[60]  R. J. Densley,et al.  Oxidation and thermal resistance of HMW-PE and XLPE HV , 1988, Conference Record of the 1988 IEEE International Symposium on Electrical Insulation.

[61]  S. Gubanski,et al.  Thioxanthone derivatives as stabilizers against electrical breakdown in cross-linked polyethylene for high voltage cable applications , 2015 .

[62]  K. Suh,et al.  Electrical properties of chemically modified polyethylenes , 1997 .

[63]  Ronnie Belmans,et al.  Modeling of Multi-Terminal VSC HVDC Systems With Distributed DC Voltage Control , 2014, IEEE Transactions on Power Systems.

[64]  Yi Yin,et al.  Effect of temperature on space charge trapping and conduction in cross-linked polyethylene , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[65]  A. Vaughan,et al.  Novel insulation materials for high voltage cable systems , 2017, IEEE Electrical Insulation Magazine.

[66]  V.G. Agelidis,et al.  VSC-Based HVDC Power Transmission Systems: An Overview , 2009, IEEE Transactions on Power Electronics.

[67]  Toshikatsu Tanaka,et al.  Advanced Nanodielectrics : Fundamentals and Applications , 2017 .

[68]  G. Chen,et al.  Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[69]  Ying Li,et al.  Experimental observation of charge transport and injection in XLPE at polarity reversal , 1992 .

[70]  K. C. Kao,et al.  New theory of electrical discharge and breakdown in low‐mobility condensed insulators , 1984 .

[71]  N. Demarquette,et al.  Polyethylene/polyhedral oligomeric silsesquioxanes composites: Electrical insulation for high voltage power cables , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[72]  Xingyi Huang,et al.  Thermoplastic isotactic polypropylene/ethylene-octene polyolefin copolymer nanocomposite for recyclable HVDC cable insulation , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[73]  Jianying Li,et al.  Improved DC performance of crosslinked polyethylene insulation depending on a higher purity , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[74]  B. Han,et al.  Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale , 2016, Materials.

[75]  G. C. Montanari,et al.  Dielectric properties of XLPE/Sio2 nanocomposites based on CIGRE WG D1.24 cooperative test results , 2011, IEEE Transactions on Dielectrics and Electrical Insulation.

[76]  Jung-Ki Park,et al.  Effects of sample preparation conditions and short chains on space charge formation in LDPE , 1996 .

[77]  Gian Carlo Montanari,et al.  Thermal endurance evaluation of XLPE insulated cables , 1991 .

[78]  É. David,et al.  Dielectric properties of POSS/LDPE and MgO/LDPE nanocomposites compounded by different techniques , 2017, 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP).

[79]  R. N. Hampton,et al.  Feature article - Some of the considerations for materials operating under high-voltage, direct- current stresses , 2008, IEEE Electrical Insulation Magazine.

[80]  B. Du,et al.  Effects of mechanical stretching on space charge behaviors of PP/POE blend for HVDC cables , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[81]  S. Lang,et al.  Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[82]  W. Long,et al.  HVDC transmission: yesterday and today , 2007, IEEE Power and Energy Magazine.