Quantum cryptography: A survey

We survey some results in quantum cryptography. After a brief introduction to classical cryptography, we provide the quantum-mechanical background needed to present some fundamental protocols from quantum cryptography. In particular, we review quantum key distribution via the BB84 protocol and its security proof, as well as the related quantum bit commitment protocol and its proof of insecurity.

[1]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[2]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[3]  V.F. Kleist,et al.  The code book: the science of secrecy from ancient egypt to quantum cryptography [Book Review] , 2002, IEEE Annals of the History of Computing.

[4]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[5]  Christopher M. Homan,et al.  One-Way Permutations and Self-Witnessing Languages , 2002, IFIP TCS.

[6]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[7]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[8]  Christopher Homan Tight lower bounds on the ambiguity of strong, total, associative, one-way functions , 2004, J. Comput. Syst. Sci..

[9]  Debbie W. Leung,et al.  The Universal Composable Security of Quantum Key Distribution , 2004, TCC.

[10]  Die gegenw/irtige Situation in der Quantenmechanik, , 2005 .

[11]  Michael R. Fellows,et al.  Self-witnessing polynomial-time complexity and prime factorization , 1992, Des. Codes Cryptogr..

[12]  Jacques Stern,et al.  Cryptanalysis of the Ajtai-Dwork Cryptosystem , 1998, CRYPTO.

[13]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Jie Wang,et al.  Average-case computational complexity theory , 1998 .

[15]  Gilles Brassard,et al.  A Note on Cryptography and NPnCoNP-P, , 1978 .

[16]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[17]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[18]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[19]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[20]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[21]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[22]  Ivan Damgård,et al.  Cryptography in the bounded quantum-storage model , 2005, IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005..

[23]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[24]  Jörg Rothe,et al.  Creating Strong, Total, Commutative, Associative One-Way Functions from Any One-Way Function in Complexity Theory , 1999, J. Comput. Syst. Sci..

[25]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[26]  Jörg Rothe,et al.  If P != NP Then Some Strongly Noninvertible Functions Are Invertible , 2001, FCT.

[27]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[28]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[29]  Jörg Rothe,et al.  Complexity Theory and Cryptology. An Introduction to Cryptocomplexity , 2005, Texts in Theoretical Computer Science. An EATCS Series.

[30]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[31]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[32]  Jörg Rothe,et al.  Complexity Theory and Cryptology , 2005 .

[33]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[34]  P R Tapster,et al.  erratum , 2002, Nature.

[35]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[36]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[37]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[38]  Osamu Watanabe,et al.  On Hardness of One-Way Functions , 1988, Inf. Process. Lett..

[39]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[40]  Jörg Rothe,et al.  Characterizing the existence of one-way permutations , 2000, Theor. Comput. Sci..

[41]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[42]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[43]  Eric Allender,et al.  P-Printable Sets , 1988, SIAM J. Comput..

[44]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[45]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[46]  Jeroen van de Graaf,et al.  Security of Quantum Key Distribution against All Collective Attacks , 2002, Algorithmica.

[47]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[48]  Mayur Thakur,et al.  One-way permutations and self-witnessing languages , 2002, J. Comput. Syst. Sci..

[49]  Jörg Rothe,et al.  Easy sets and hard certificate schemes , 1995, Acta Informatica.

[50]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[51]  Takeshi Koshiba,et al.  Universal test for quantum one-way permutations , 2004, Theor. Comput. Sci..

[52]  M.R. Fellows,et al.  Self-witnessing polynomial-time complexity and prime factorization , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[53]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[54]  Takeshi Koshiba,et al.  Universal test for quantum one-way permutations , 2005, Theor. Comput. Sci..

[55]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[56]  Gilles Brassard,et al.  A note on the complexity of cryptography (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[57]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[58]  Lance Fortnow,et al.  Inverting onto functions , 2003, Inf. Comput..

[59]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[60]  Jörg Rothe,et al.  On characterizing the existence of partial one-way permutations , 2002, Inf. Process. Lett..

[61]  Alexander May,et al.  Computing the RSA Secret Key Is Deterministic Polynomial Time Equivalent to Factoring , 2004, CRYPTO.

[62]  Juris Hartmanis,et al.  One-Way Functions and the Nonisomorphism of NP-Complete Sets , 1991, Theor. Comput. Sci..

[63]  Jörg Rothe,et al.  On Sets with Easy Certificates and the Existence of One-Way Permutations , 1997, CIAC.

[64]  Simon Singh,et al.  The Code Book , 1999 .

[65]  Alan L. Selman A survey of one-way functions in complexity theory , 2005, Mathematical systems theory.

[66]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[67]  Ueli Maurer,et al.  The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms , 1999, SIAM J. Comput..

[68]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[69]  Jörg Rothe,et al.  Enforcing and Defying Associativity, Commutativity, Totality, and Strong Noninvertibility for One-Way Functions in Complexity Theory , 2005, ICTCS.

[70]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[71]  U. Maurer,et al.  Locking of accessible information and implications for the security of quantum cryptography , 2005, quant-ph/0512021.

[72]  John E. Hopcroft,et al.  A Note on Cryptography and NP$\cap$ CoNP-P , 1978 .

[73]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[74]  Howard E. Brandt Positive operator valued measure in quantum information processing , 1999 .

[75]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[76]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[77]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[78]  D. Mayers The Trouble with Quantum Bit Commitment , 1996, quant-ph/9603015.

[79]  Jörg Rothe,et al.  If P != NP Then Some Strongly Noninvertible Functions Are Invertible , 2000, FCT.

[80]  Jörg Rothe,et al.  One-way functions in worst-case cryptography: algebraic and security properties are on the house , 1999, SIGA.

[81]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[82]  Ivan Damgård,et al.  Cryptography in the Bounded-Quantum-Storage Model , 2008, SIAM J. Comput..

[83]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[84]  Alan T. Sherman,et al.  An Observation on Associative One-Way Functions in Complexity Theory , 1997, Inf. Process. Lett..

[85]  Douglas R. Stinson Cryptography: Theory and Practice, Third Edition , 2005 .

[86]  L. Berman Polynomial reducibilities and complete sets. , 1977 .

[87]  Andrew Chi-Chih Yao,et al.  Security of quantum protocols against coherent measurements , 1995, STOC '95.

[88]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[89]  Ker-I Ko,et al.  On Some Natural Complete Operators , 1985, Theor. Comput. Sci..