A reliable algorithm for higher order boundary value problems

[1]  H. M. Baskonus,et al.  Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control , 2022, Fractal and Fractional.

[2]  E. D. Goufo,et al.  Self-Similarity Techniques for Chaotic attractors with Many Scrolls using Step Series switching , 2021, Math. Model. Anal..

[3]  V. Vijayakumar,et al.  Discussion on the controllability results for fractional neutral impulsive Atangana–Baleanu delay integro‐differential systems , 2021, Mathematical Methods in the Applied Sciences.

[4]  K. Nisar,et al.  A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems , 2021, Advances in Difference Equations.

[5]  Kottakkaran Sooppy Nisar,et al.  A discussion on approximate controllability of Sobolev‐type Hilfer neutral fractional stochastic differential inclusions , 2021, Asian Journal of Control.

[6]  Kottakkaran Sooppy Nisar,et al.  An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain , 2021 .

[7]  V. Vijayakumar,et al.  New results concerning to approximate controllability of fractional integro‐differential evolution equations of order 1 < r < 2 , 2020, Numerical Methods for Partial Differential Equations.

[8]  V. Vijayakumar,et al.  Controllability for a class of second-order evolution differential inclusions without compactness , 2019 .

[9]  V. Vijayakumar Approximate Controllability for a Class of Second-Order Stochastic Evolution Inclusions of Clarke’s Subdifferential Type , 2018, Results in Mathematics.

[10]  Ghazala Akram,et al.  An improved adaptation of homotopy analysis method , 2017 .

[11]  Omar Abu Arqub,et al.  A Residual Power Series Technique for Solving Systems of Initial Value Problems , 2016 .

[12]  Omar Abu Arqub,et al.  Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm , 2015, J. Comput. Phys..

[13]  Ahmed Alsaedi,et al.  A novel expansion iterative method for solving linear partial differential equations of fractional order , 2015, Appl. Math. Comput..

[14]  H. Rehman,et al.  Solution of Thirteenth Order Boundary Value Problems by Differential Transformation Method , 2013 .

[15]  Omar Abu Arqub,et al.  A Reliable Analytical Method for Solving Higher-Order Initial Value Problems , 2013 .

[16]  D. Baleanu,et al.  On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces , 2013, Advances in Difference Equations.

[17]  O. J. Fenuga,et al.  Variational Iteration Method Solutions for Certain Thirteenth Order Ordinary Differential Equations , 2013 .

[18]  Omar Abu Arqub,et al.  A Representation of the Exact Solution of Generalized Lane-Emden Equations Using a New Analytical Method , 2013 .

[19]  Shahid S. Siddiqi,et al.  Numerical Solution of Higher Order Boundary Value Problems , 2013 .

[20]  S. Siddiqi,et al.  Solution of Seventh Order Boundary Value Problems by Variation of Parameters Method , 2013 .

[21]  M. Al‐Smadi Solving initial value problems by residual power series method , 2013 .

[22]  Ghazala Akram,et al.  Numerical solution of eighth order boundary value problems in reproducing Kernel space , 2012, Numerical Algorithms.

[23]  K. N. S. KasiViswanadham,et al.  Quintic B-Spline Collocation Method for Tenth Order Boundary Value Problems , 2012 .

[24]  M. Noor,et al.  Variational iteration method for solving twelfth-order boundary-value problems using He’s polynomials , 2010 .

[25]  R. Jalilian,et al.  NUMERICAL SOLUTION OF FIFTH-ORDER BOUNDARY-VALUE PROBLEMS IN OFF STEP POINTS , 2010 .

[26]  Geng Fazhan,et al.  Variational iteration method for solving tenth-order boundary value problems , 2009 .

[27]  M. Noor,et al.  Variational Iteration Method for Solving Higher-order Nonlinear Boundary Value Problems Using He's Polynomials , 2008 .

[28]  A. Golbabai,et al.  Application of homotopy perturbation method for solving eighth-order boundary value problems , 2007, Appl. Math. Comput..

[29]  Shahid S. Siddiqi,et al.  Solution of eighth-order boundary value problems using the non-polynomial spline technique , 2007, Int. J. Comput. Math..

[30]  Shahid S. Siddiqi,et al.  Solutions of tenth-order boundary value problems using eleventh degree spline , 2007, Appl. Math. Comput..

[31]  David J. Evans,et al.  An efficient approach to approximate solutions of eighth-order boundary-value problems , 2004, Int. J. Comput. Math..

[32]  Gui-Rong Liu,et al.  Differential quadrature solutions of eighth-order boundary-value differential equations , 2002 .

[33]  Edward H. Twizell,et al.  Spline solutions of linear tenth-order boundary-value problems , 1998, Int. J. Comput. Math..