Multi-criteria GA-based Pareto optimization of building direction for rapid prototyping

Selection of a building direction is an important step for rapid prototyping regardless of the specific processes used to create the part. It involves the consideration of multi-factors that have influences on surface quality, build efficiency and support structure, etc. Contemporary approaches did not consider the global directional space to search for the optimal building direction. In this paper, we use a multi-sphere model for multi-criteria optimization of building direction in rapid prototyping. Each sphere represents the global directional space for one optimization criterion, and is obtained by uniformly discretizing the surface of a unit sphere. Optimization is then conducted over each discretized spherical surface for each criterion. Two objectives, theoretical volume deviation (TVD) and part height are simultaneously optimized using genetic algorithm. TVD is computed to evaluate the volumetric error along each building direction in a general way. The Pareto front is computed as well in order to study the competing effect from these two criteria. At the end of the paper, examples are presented to show the effectiveness of the method.

[1]  P. M. Pandey,et al.  Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm , 2004 .

[2]  Shuo-Yan Chou,et al.  Parting directions for mould and die design , 1993, Comput. Aided Des..

[3]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[4]  Kalyanmoy Deb,et al.  Multi‐objective optimisation and multi‐criteria decision making in SLS using evolutionary approaches , 2011 .

[5]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[6]  J. Giannatsis,et al.  Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography , 2009 .

[7]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Jun Huang,et al.  Algorithms for Computing Global Accessibility Cones , 2003, J. Comput. Inf. Sci. Eng..

[10]  Ye Li,et al.  Computing Axes of Rotation for Setup Planning Using Visibility of Polyhedral Computer-Aided Design Models , 2012 .

[11]  J. Giannatsis,et al.  Decision support tool for selecting fabrication parameters in stereolithography , 2007 .

[12]  Syed H. Masood,et al.  A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping , 2002 .

[13]  T. C. Woo,et al.  Computational Geometry on the Sphere With Application to Automated Machining , 1992 .

[14]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[15]  S. S. Pande,et al.  Intelligent layout planning for rapid prototyping , 2008 .

[16]  Kwan H. Lee,et al.  Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making , 2006 .

[17]  Aristides A. G. Requicha,et al.  Accessibility analysis for planning of dimensional inspection with coordinate measuring machines , 1999, IEEE Trans. Robotics Autom..

[18]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[19]  Kunwoo Lee,et al.  The development of a CAD environment to determine the preferred build-up direction for layered manufacturing , 1998 .

[20]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[21]  Seok-Hee Lee,et al.  Determination of fabricating orientation and packing in SLS process , 2001 .

[22]  Mircea Ancău,et al.  The computation of Pareto-optimal set in multicriterial optimization of rapid prototyping processes , 2010, Comput. Ind. Eng..

[23]  S. T. Tan,et al.  Putting objects into a cylindrical/rectangular bounded volume , 2004, Comput. Aided Des..

[24]  Andrew Y. C. Nee,et al.  Multi‐objective optimization of part‐ building orientation in stereolithography , 1995 .

[25]  Yonghua Chen,et al.  Determining Build Orientation for Layer-Based Machining , 2001 .

[26]  Ho-Chan Kim,et al.  Fabrication direction optimization to minimize post-machining in layered manufacturing , 2007 .

[27]  Chandan Kumar,et al.  Volume deviation in direct slicing , 2005 .

[28]  Syed H. Masood,et al.  A volumetric approach to part-build orientations in rapid prototyping , 2001 .

[29]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[30]  Jian Zhang,et al.  A unit sphere discretization and search approach to optimize building direction with minimized volumetric error for rapid prototyping , 2013 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[33]  Yoong-Ho Jung,et al.  Efficient calculation of trapped volumes in the layered manufacturing process , 1998 .

[34]  Emad Abouel Nasr,et al.  Rapid prototyping : theory and practice , 2006 .

[35]  Richard H. Crawford,et al.  Optimizing Part Quality with Orientation , 1995 .