Precise tuning of silica pore length and pore diameter on silica-encapsulated gold core-shell nanoparticles and catalytic impact

[1]  Yan Yu,et al.  Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structure‐Dependent Catalytic Performance , 2021, Advanced materials.

[2]  K. Parkhomenko,et al.  Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties , 2021, Molecules.

[3]  A. Ghoufi Molecular Origin of the Prepeak in the Structure Factor of Alcohols. , 2020, The journal of physical chemistry. B.

[4]  Di Wu,et al.  Mesoporous silica-encapsulated gold core–shell nanoparticles for active solvent-free benzyl alcohol oxidation , 2020 .

[5]  A. Ghoufi,et al.  Dynamic Heterogeneities in Liquid Mixtures Confined in Nanopores. , 2020, The journal of physical chemistry. B.

[6]  Kai Yang,et al.  Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging , 2019, Nature Communications.

[7]  Christy Wheeler West,et al.  Impacts of calcination on surface-clean supported nanoparticle catalysts , 2019, Applied Catalysis A: General.

[8]  A. Ghoufi,et al.  Microphase separation of a miscible binary liquid mixture under confinement at the nanoscale , 2019, npj Computational Materials.

[9]  E. S. Kooij,et al.  Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG , 2019, Beilstein journal of nanotechnology.

[10]  Shu Pang,et al.  A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters , 2018, Microchimica Acta.

[11]  M. Ganjali,et al.  Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability , 2018, Process Biochemistry.

[12]  S. Hannula,et al.  Effect of Ethanol on Ag@Mesoporous Silica Formation by In Situ Modified Stöber Method , 2018, Nanomaterials.

[13]  Ning Fang,et al.  In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement , 2018, Nature Catalysis.

[14]  S. Saunders,et al.  Switchable Surfactants for the Preparation of Monodisperse, Supported Nanoparticle Catalysts. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[15]  Chengmeng Chen,et al.  Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation , 2017 .

[16]  Dayang Wang,et al.  Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[17]  R. Meijboom,et al.  Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles , 2017 .

[18]  Julian R. Jones,et al.  Controlling particle size in the Stöber process and incorporation of calcium. , 2016, Journal of colloid and interface science.

[19]  D. Higgins,et al.  Spectroscopic and Polarization-Dependent Single-Molecule Tracking Reveal the One-Dimensional Diffusion Pathways in Surfactant-Templated Mesoporous Silica , 2016 .

[20]  B. Drossel,et al.  Mixtures of Isobutyric Acid and Water Confined in Cylindrical Silica Nanopores Revisited: A Combined Solid-State NMR and Molecular Dynamics Simulation Study , 2015 .

[21]  D. Higgins,et al.  Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials. , 2015, Annual review of analytical chemistry.

[22]  Xinwen Guo,et al.  Mesostructure-tunable and size-controllable hierarchical porous silica nanospheres synthesized by aldehyde-modified Stöber method , 2015 .

[23]  J. Vijaya,et al.  Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods , 2015 .

[24]  Hongbo Yu,et al.  Architecture controlled PtNi@mSiO2 and Pt–NiO@mSiO2 mesoporous core–shell nanocatalysts for enhanced p-chloronitrobenzene hydrogenation selectivity , 2015 .

[25]  Guglielmo Lanzani,et al.  Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. , 2014, ACS nano.

[26]  Hengquan Yang,et al.  Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions. , 2014, Chemical communications.

[27]  Jie Han,et al.  Beyond yolk-shell nanostructure: a single Au nanoparticle encapsulated in the porous shell of polymer hollow spheres with remarkably improved catalytic efficiency and recyclability. , 2014, Chemical Communications.

[28]  J. Bossa,et al.  Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations , 2013, 1312.2414.

[29]  K. Tadanaga,et al.  Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process , 2013, Journal of Sol-Gel Science and Technology.

[30]  D. Zhao,et al.  One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity , 2013, Nano Research.

[31]  A. Ghoufi,et al.  Confinement of tert-Butanol Nanoclusters in Hydrophilic and Hydrophobic Silica Nanopores , 2013 .

[32]  P. A. Monson Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory , 2012 .

[33]  Joseph A Morrone,et al.  Structure and Dynamics of Acetonitrile Confined in a Silica Nanopore , 2012 .

[34]  L. Liz‐Marzán,et al.  Surfactant (bi)layers on gold nanorods. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[35]  G. Hutchings,et al.  Oxidation of benzyl alcohol by using gold nanoparticles supported on ceria foam. , 2012, ChemSusChem.

[36]  X. Lou,et al.  Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. , 2011, Chemical communications.

[37]  Meng Yang,et al.  Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen , 2011 .

[38]  H. Gu,et al.  Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. , 2011, Journal of colloid and interface science.

[39]  V. Masalov,et al.  Mechanism of formation and nanostructure of Stöber silica particles , 2011, Nanotechnology.

[40]  Wangqing Zhang,et al.  Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres , 2011 .

[41]  Hua Tian,et al.  Characteristics of Au/HMS catalysts for selective oxidation of benzyl alcohol to benzaldehyde , 2010 .

[42]  Jinjun Li,et al.  Catalytic oxidation of benzyl alcohol on Au or Au-Pd nanoparticles confined in mesoporous silica , 2009 .

[43]  G. Hutchings,et al.  Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. , 2009, Physical chemistry chemical physics : PCCP.

[44]  Chulhwan Park,et al.  Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts , 2009 .

[45]  W. Thompson,et al.  Grand canonical Monte Carlo simulations of acetonitrile filling of silica pores of varying hydrophilicity/hydrophobicity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[46]  Bing Xu,et al.  Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. , 2008, Journal of the American Chemical Society.

[47]  Jens Michaelis,et al.  Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels. , 2008, Journal of the American Chemical Society.

[48]  B. Smarsly,et al.  Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[49]  D. Morineau,et al.  Interfacial structure of an H-bonding liquid confined into silica nanopore with surface silanols , 2005 .

[50]  G. Hutchings,et al.  Solvent-free Oxidation of Primary Alcohols to Aldehydes using Supported Gold Catalysts , 2005 .

[51]  A. Datye,et al.  The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica. , 2005, The journal of physical chemistry. B.

[52]  D. Morineau,et al.  Structure of liquid and glassy methanol confined in cylindrical pores. , 2004, The Journal of chemical physics.

[53]  A. Neimark,et al.  Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores , 2003 .

[54]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[55]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[56]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[57]  T. W. Żerda,et al.  Properties of liquid acetone in silica pores: Molecular dynamics simulation , 1996 .

[58]  P. Schneider Adsorption isotherms of microporous-mesoporous solids revisited , 1995 .

[59]  C. Zukoski,et al.  Uniform Silica Particle Precipitation : An Aggregative Growth Model , 1991 .

[60]  Charles F. Zukoski,et al.  Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides , 1991 .

[61]  P. Tarazona,et al.  Theory of condensation in narrow capillaries , 1984 .

[62]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[63]  J. Tukey Comparing individual means in the analysis of variance. , 1949, Biometrics.

[64]  T. Bein,et al.  Talented Mesoporous Silica Nanoparticles , 2017 .

[65]  Tian Sang,et al.  Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. , 2010, Journal of colloid and interface science.

[66]  R. V. van Santen,et al.  Complementary Structure Sensitive and Insensitive Catalytic Relationships , 2009 .

[67]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .