More on lower bounds for partitioning alpha-large sets

Abstract Continuing the earlier research from [T. Bigorajska, H. Kotlarski, Partitioning α -large sets: some lower bounds, Trans. Amer. Math. Soc. 358 (11) (2006) 4981–5001] we show that for the price of multiplying the number of parts by 3 we may construct partitions all of whose homogeneous sets are much smaller than in [T. Bigorajska, H. Kotlarski, Partitioning α -large sets: some lower bounds, Trans. Amer. Math. Soc. 358 (11) (2006) 4981–5001]. We also show that the Paris–Harrington independent statement remains unprovable if the number of colors is restricted to 2, in fact, the statement ∀ a , b ∃ d d → ∗ ( a ) 2 b + 2 is unprovable in I Σ b . Other results concern some lower bounds for partitions of pairs.

[1]  Zygmunt Ratajczyk,et al.  Subsystems of True Arithmetic and Hierarchies of Functions , 1993, Ann. Pure Appl. Log..

[2]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[3]  Z. Ratajczyk A combinatorial analysis of functions provably recursive in $ΙΣ_n$ , 1988 .

[4]  Paul Erdös,et al.  Some Bounds for the Ramsey-Paris-Harrington Numbers , 1981, J. Comb. Theory, Ser. A.

[5]  Henryk Kotlarski,et al.  Inductive Full Satisfaction Classes , 1990, Ann. Pure Appl. Log..

[6]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[7]  Henryk Kotlarski,et al.  A partition theorem for α-large sets , 1999 .

[8]  Jeremy Avigad,et al.  A Model-Theoretic Approach to Ordinal Analysis , 1997, Bulletin of Symbolic Logic.

[9]  Henryk Kotlarski,et al.  Partitioning $\alpha$--large sets: some lower bounds , 2006 .

[10]  Henryk Kotlarski,et al.  More on induction in the language with a satisfaction class , 1990, Math. Log. Q..

[11]  Petr Hájek,et al.  Combinatorial principles concerning approximations of functions , 1987, Arch. Math. Log..

[12]  Jeff B. Paris,et al.  Some independence results for Peano arithmetic , 1978, Journal of Symbolic Logic.

[13]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[14]  Stephen G. Simpson,et al.  A Finite Combinatorial Principle Which is Equivalent to the 1-Consistency of Predicative Analysis , 1982 .

[15]  Jussi KETONENt,et al.  Rapidly growing Ramsey functions , 1981 .

[16]  Carl G. Jockusch,et al.  On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.

[17]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[18]  J. Spencer Ramsey Theory , 1990 .

[19]  Henryk Kotlarski,et al.  Some combinatorics involving ξ-large sets , 2002 .

[20]  Richard Sommer,et al.  Transfinite Induction within Peano Arithmetic , 1995, Ann. Pure Appl. Log..