Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications

Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.

[1]  David N. Green,et al.  The spatial coherence structure of infrasonic waves: analysis of data from International Monitoring System arrays , 2015 .

[2]  Edgar R. Canavan,et al.  Three-axis superconducting gravity gradiometer for sensitive gravity experiments , 2002 .

[3]  F. Sorrentino,et al.  Sensitivity limits of a Raman atom interferometer as a gravity gradiometer , 2013, 1312.3741.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[7]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[8]  T. Ebisuzaki,et al.  DECIGO: the Japanese space gravitational wave antenna , 2008 .

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  E. Colbert,et al.  Intermediate - mass black holes , 2003 .

[11]  Pau Amaro-Seoane,et al.  Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy , 2006 .

[12]  Giovanni Del Galdo,et al.  On the spatial coherence in mixed sound fields and its application to signal-to-diffuse ratio estimation. , 2012, The Journal of the Acoustical Society of America.

[13]  M. Lighthill On sound generated aerodynamically II. Turbulence as a source of sound , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Holger Muller,et al.  Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.

[15]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[16]  T. Creighton Tumbleweeds and airborne gravitational noise sources for LIGO , 2000, gr-qc/0007050.

[17]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[18]  M. Barsuglia,et al.  Transient gravity perturbations induced by earthquake rupture , 2015 .

[19]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[20]  T. Ebisuzaki,et al.  The status of DECIGO , 2017 .

[21]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[22]  M. Barsuglia,et al.  Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake , 2016, Nature Communications.

[23]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[24]  C. S. Unnikrishnan,et al.  IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India , 2015, 1510.06059.

[25]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[26]  Jean-Paul Montagner,et al.  Observations and modeling of the elastogravity signals preceding direct seismic waves , 2017, Science.

[27]  Ettore Majorana,et al.  Low-frequency terrestrial tensor gravitational-wave detector , 2016 .

[28]  D. Brown The LIGO Scientific Collaboration search for inspiralling binary neutron stars , 2006 .

[29]  Michael Hohensee,et al.  Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.

[30]  Manochehr Bahavar,et al.  Ambient infrasound noise , 2005 .

[31]  B. Fang,et al.  MIGA: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy , 2016, SPIE Photonics Europe.

[32]  Peter R. Saulson,et al.  Terrestrial gravitational noise on a gravitational wave antenna , 1984 .

[33]  奥仲 哲弥,et al.  肺門部早期肺癌に対する光線力学的治療法(肺門部早期癌の診断と治療)(第 18 回日本気管支学会総会特集号) , 1995 .

[34]  W. Chaibi,et al.  Low frequency gravitational wave detection with ground-based atom interferometer arrays , 2016, 1601.00417.

[35]  M. Ando,et al.  Upper limit on gravitational wave backgrounds at 0.2 Hz with a torsion-bar antenna. , 2011, Physical review letters.

[36]  Jan Harms,et al.  Terrestrial Gravity Fluctuations , 2015, Living reviews in relativity.

[37]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[38]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[39]  M. Ando,et al.  Torsion-bar antenna for low-frequency gravitational-wave observations. , 2010, Physical review letters.