The empirical Christoffel function in Statistics and Machine Learning

We illustrate the potential in statistics and machine learning of the Christoffel function, or more precisely, its empirical counterpart associated with a counting measure uniformly supported on a finite set of points. Firstly, we provide a thresholding scheme which allows to approximate the support of a measure from a finite subset of its moments with strong asymptotic guaranties. Secondly, we provide a consistency result which relates the empirical Christoffel function and its population counterpart in the limit of large samples. Finally, we illustrate the relevance of our results on simulated and real world datasets for several applications in statistics and machine learning: (a) density and support estimation from finite samples, (b) outlier and novelty detection and (c) affine matching.

[1]  Jean B. Lasserre,et al.  Level Sets and NonGaussian Integrals of Positively Homogeneous Functions , 2011, IGTR.

[2]  Jean B. Lasserre,et al.  Sorting out typicality with the inverse moment matrix SOS polynomial , 2016, NIPS.

[3]  Yuan Xu,et al.  Asymptotics for orthogonal polynomials and Christoffel functions on a ball , 1996 .

[4]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[5]  S. D. Marchi,et al.  Multivariate Christoffel functions and hyperinterpolation , 2014 .

[6]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[7]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[8]  Robert Berman Bergman kernels for weighted polynomials and weighted equilibrium measures of C^n , 2007 .

[9]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[10]  András Kroó,et al.  Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials , 2013, Canadian Journal of Mathematics.

[11]  E. Saff,et al.  Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction , 2008, 0811.1715.

[12]  Yuan Xu,et al.  Asymptotics of the Christoffel Functions on a Simplex in Rd , 1999 .

[13]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[14]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[15]  Vladislav Gennadievich Malyshkin Multiple-Instance Learning: Christoffel Function Approach to Distribution Regression Problem , 2015, ArXiv.

[16]  Attila Máté,et al.  Bernstein's Inequality in L p for 0 < p < 1 and (C, 1) Bounds for Orthogonal Polynomials , 1980 .

[17]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[18]  Hongxing He,et al.  A comparative study of RNN for outlier detection in data mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[19]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[20]  Attila Máté,et al.  Szegö’s extremum problem on the unit circle , 1991 .

[21]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[22]  Vilmos Totik,et al.  Asymptotics for Christoffel functions for general measures on the real line , 2000 .

[23]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[24]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[25]  Jean B. Lasserre,et al.  MEASURES WITH ZEROS IN THE INVERSE OF THEIR MOMENT MATRIX , 2008 .

[26]  András Kroó,et al.  Christoffel functions and universality on the boundary of the ball , 2013 .