CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data

[1]  G. Lin,et al.  A comparison framework and guideline of clustering methods for mass cytometry data , 2019, Genome Biology.

[2]  Zhu Chen,et al.  Differential Expression of CD49f Discriminates the Independently Emerged Hematopoietic Stem Cells and Erythroid-Biased Progenitors , 2019, Blood.

[3]  G. Walther,et al.  Automated subset identification and characterization pipeline for multidimensional flow and mass cytometry data clustering and visualization , 2019, Communications Biology.

[4]  P. Chattopadhyay,et al.  High-Parameter Single-Cell Analysis. , 2019, Annual review of analytical chemistry.

[5]  Malgorzata Nowicka,et al.  CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. , 2019, F1000Research.

[6]  M. Robinson,et al.  diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering , 2019, Communications Biology.

[7]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[8]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome biology.

[9]  Lars R Olsen,et al.  The anatomy of single cell mass cytometry data. , 2019, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[10]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[11]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[12]  Rolf Backofen,et al.  GraphDDP: a graph-embedding approach to detect differentiation pathways in single-cell-data using prior class knowledge , 2018, Nature Communications.

[13]  Miroslav Koblížek,et al.  flowIO: Flow cytometry standard conformance testing, editing, and export tool , 2018, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[14]  Sandra Andorf,et al.  MetaCyto: A Tool for Automated Meta-analysis of Mass and Flow Cytometry Data. , 2018, Cell reports.

[15]  Mark D. Robinson,et al.  diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering , 2018, Communications Biology.

[16]  A. Regev,et al.  Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.

[17]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[18]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[19]  B. Göttgens,et al.  From haematopoietic stem cells to complex differentiation landscapes , 2018, Nature.

[20]  Abigail K Kimball,et al.  A Beginner’s Guide to Analyzing and Visualizing Mass Cytometry Data , 2018, The Journal of Immunology.

[21]  Joseph T. Roland,et al.  Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. , 2017, Cell systems.

[22]  B. Becher,et al.  CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets , 2017, F1000Research.

[23]  Lili Wang,et al.  Standardization, Calibration, and Control in Flow Cytometry , 2017, Current protocols in cytometry.

[24]  Mark D. Robinson,et al.  Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data , 2016, bioRxiv.

[25]  Hao Chen,et al.  Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline , 2016, PLoS Comput. Biol..

[26]  H. Kiryu,et al.  SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation , 2016, BMC Bioinformatics.

[27]  Jeffrey J. Tabor,et al.  FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. , 2016, ACS synthetic biology.

[28]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[29]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[30]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[31]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[32]  Piet Demeester,et al.  FlowSOM: Using self‐organizing maps for visualization and interpretation of cytometry data , 2015, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[33]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[34]  C. Burt,et al.  The Human Perspective , 2015, Perspectives in biology and medicine.

[35]  E. Marco,et al.  Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape , 2014, Proceedings of the National Academy of Sciences.

[36]  Greg Finak,et al.  OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, End-to-End Flow Cytometry Data Analysis , 2014, PLoS Comput. Biol..

[37]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[38]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[39]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[40]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[41]  Josef Spidlen,et al.  FlowRepository: A resource of annotated flow cytometry datasets associated with peer‐reviewed publications , 2012, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[42]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[43]  Elisa Laurenti,et al.  Hematopoiesis: a human perspective. , 2012, Cell stem cell.

[44]  Sean C. Bendall,et al.  Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE , 2011, Nature Biotechnology.

[45]  Yang Gao,et al.  TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy , 2011, Cell Research.

[46]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[47]  Ryan R Brinkman,et al.  Rapid cell population identification in flow cytometry data , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[48]  Yi-Ching Liaw,et al.  Fast exact k nearest neighbors search using an orthogonal search tree , 2010, Pattern Recognit..

[49]  Robert Gentleman,et al.  flowCore: a Bioconductor package for high throughput flow cytometry , 2009, BMC Bioinformatics.

[50]  Robert Gentleman,et al.  Using flowViz to visualize flow cytometry data , 2008, Bioinform..