His-containing plant metallothioneins: comparative study of divalent metal-ion binding by plant MT3 and MT4 isoforms

[1]  C. Blindauer,et al.  Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. , 2013, Metallomics : integrated biometal science.

[2]  E. Freisinger,et al.  Metal ion release from metallothioneins: proteolysis as an alternative to oxidation. , 2013, Metallomics : integrated biometal science.

[3]  C. Blindauer,et al.  Lessons on the critical interplay between zinc binding and protein structure and dynamics. , 2013, Journal of inorganic biochemistry.

[4]  S. Atrian,et al.  The response of the different soybean metallothionein isoforms to cadmium intoxication. , 2012, Journal of inorganic biochemistry.

[5]  E. Goormaghtigh,et al.  Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens. , 2012, Biochimica et biophysica acta.

[6]  J. Schjoerring,et al.  Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding1[W][OA] , 2012, Plant Physiology.

[7]  E. Freisinger Structural features specific to plant metallothioneins , 2011, JBIC Journal of Biological Inorganic Chemistry.

[8]  S. Atrian,et al.  Metallothionein protein evolution: a miniassay , 2011, JBIC Journal of Biological Inorganic Chemistry.

[9]  E. Freisinger,et al.  Protein and metal cluster structure of the wheat metallothionein domain γ-Ec-1: the second part of the puzzle , 2011, JBIC Journal of Biological Inorganic Chemistry.

[10]  M. Höckner,et al.  Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins , 2011, BMC Biology.

[11]  C. Blindauer,et al.  The isolated Cys2His2 site in EC metallothionein mediates metal-specific protein folding. , 2010, Molecular bioSystems.

[12]  T. Rausch,et al.  Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments. , 2010, Journal of agricultural and food chemistry.

[13]  S. Atrian,et al.  Caenorhabditis elegans metallothionein isoform specificity – metal binding abilities and the role of histidine in CeMT1 and CeMT2 , 2009, The FEBS journal.

[14]  P. Güntert,et al.  The beta(E)-domain of wheat E(c)-1 metallothionein: a metal-binding domain with a distinctive structure. , 2009, Journal of molecular biology.

[15]  C. Griesinger,et al.  Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation. , 2008, Journal of the American Chemical Society.

[16]  C. Blindauer,et al.  Metallothioneins with unusual residues: histidines as modulators of zinc affinity and reactivity. , 2008, Journal of inorganic biochemistry.

[17]  P. Goldsbrough,et al.  Examining the Specific Contributions of Individual Arabidopsis Metallothioneins to Copper Distribution and Metal Tolerance1[OA] , 2008, Plant Physiology.

[18]  R. Schmid,et al.  Toward a property/function relationship for metallothioneins: Histidine coordination and unusual cluster composition in a zinc‐metallothionein from plants , 2007, Proteins.

[19]  G. Mir,et al.  The CdII-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins , 2007, JBIC Journal of Biological Inorganic Chemistry.

[20]  P. Sadler,et al.  Histidine ligands in bacterial metallothionein enhance cluster stability , 2007, JBIC Journal of Biological Inorganic Chemistry.

[21]  G. Mir,et al.  Plant metallothionein domains: functional insight into physiological metal binding and protein folding. , 2006, Biochimie.

[22]  L. Villarreal,et al.  Zn- and Cd-metallothionein recombinant species from the most diverse phyla may contain sulfide (S2-) ligands. , 2005, Angewandte Chemie.

[23]  Ulrich Weser,et al.  The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Tzen,et al.  Cloning and Expression of a Seed-Specific Metallothionein-Like Protein from Sesame , 2005, Bioscience, biotechnology, and biochemistry.

[25]  R. Leplae,et al.  Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens , 2004, FEBS letters.

[26]  S. Abdullah,et al.  Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis , 2002 .

[27]  D. Westaway,et al.  Mapping Cu(II) Binding Sites in Prion Proteins by Diethyl Pyrocarbonate Modification and Matrix-assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometric Footprinting* , 2002, The Journal of Biological Chemistry.

[28]  R. Sairam,et al.  Oxidative stress and antioxidant activity as the basis of senescence in maize leaves , 2001 .

[29]  A. Schlereth,et al.  Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. , 2001, Journal of experimental botany.

[30]  P. Sadler,et al.  A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Wilson,et al.  Protease C2, a cysteine endopeptidase involved in the continuing mobilization of soybean beta-conglycinin seed proteins. , 2001, Biochimica et biophysica acta.

[32]  B. Oliva,et al.  Binding of excess cadmium(II) to Cd7-metallothionein from recombinant mouse Zn7-metallothionein 1. UV-VIS absorption and circular dichroism studies and theoretical location approach by surface accessibility analysis. , 1997, Journal of inorganic biochemistry.

[33]  R. Gonzàlez-Duarte,et al.  Recombinant synthesis of mouse Zn3-β and Zn4-α metallothionein 1 domains and characterization of their cadmium(II) binding capacity , 1997, Cellular and Molecular Life Sciences CMLS.

[34]  Jeremy M. Berg,et al.  Ligand variation and metal ion binding specificity in zinc finger peptides , 1993 .

[35]  C. D. Walton,et al.  Micromolar protein concentrations and metalloprotein stoichiometries obtained by inductively coupled plasma atomic emission spectrometric determination of sulfur. , 1988, Analytical chemistry.

[36]  L. Hanley-Bowdoin,et al.  A novel protein programmed by the mRNA conserved in dry wheat embryos. The principal site of cysteine incorporation during early germination. , 1983, European journal of biochemistry.

[37]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[38]  S. Atrian,et al.  State-of-the-art of metallothioneins at the beginning of the 21st century , 2012 .

[39]  E. Freisinger Spectroscopic characterization of a fruit-specific metallothionein : M. acuminata MT3 , 2007 .

[40]  C. Cobbett,et al.  Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. , 2002, Annual review of plant biology.

[41]  M. Saraste,et al.  FEBS Lett , 2000 .

[42]  R. C. Rosenberg,et al.  Carbethoxylation of coordinated histidine by diethylpyrocarbonate. , 1993, Journal of inorganic biochemistry.

[43]  E. W. Miles Modification of histidyl residues in proteins by diethylpyrocarbonate. , 1977, Methods in enzymology.