Modeling of optimum chiral carbon nanotube using DFT
暂无分享,去创建一个
Sheroz Khan | Soheli Farhana | Ahm Zahirul Alam | A. Alam | Sheroz Khan | S. Farhana | Sma Motakabber | S. Motakabber
[1] B. Yakobson,et al. Ballistic thermal conductance of graphene ribbons. , 2010, Nano letters.
[2] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[3] W. Goddard,et al. Thermal conductivity of carbon nanotubes , 2000 .
[4] P. McEuen,et al. Single-walled carbon nanotube electronics , 2002 .
[5] R O Jones,et al. The surface energy of a bounded electron gas , 1974 .
[6] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[7] Chongwu Zhou,et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.
[8] 王化,et al. Joubert 综合征一例 , 2006 .
[9] Leonard Kleinman,et al. New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .
[10] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[11] Sang Hyun Lee,et al. Antiseptic single wall carbon nanotube bandages , 2009 .
[12] D. Cobden,et al. Kondo physics in carbon nanotubes , 2000, Nature.
[13] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[14] E. Fermi. Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .
[15] E. Antončík. A new formulation of the method of nearly free electrons , 1954 .
[16] A. Niknejad,et al. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.
[17] J. Perdew,et al. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.
[18] Francisco del Monte,et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes. , 2008, Biomaterials.
[19] M. P. Anantram,et al. Physics of carbon nanotube electronic devices , 2006 .
[20] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] Mitra Dutta,et al. Thermal conductivity of carbon nanotubes , 2009 .
[22] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[23] C. Wang,et al. Terahertz generation and chaotic dynamics in single-walled zigzag carbon nanotubes. , 2009, Chaos.
[24] J. F. Stoddart,et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.
[25] K. Burke,et al. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .
[26] Thomas Nussbaumer,et al. Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.
[27] Wang,et al. Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.
[28] Ying Tian,et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. , 2010, Nano letters.
[29] Yang Xu,et al. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[30] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[32] A. H. M. Zahirul Alam,et al. Analysis of CNT electronics structure to design CNTFET , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).
[33] Richard M. Martin. Electronic Structure: Frontmatter , 2004 .
[34] D. Vanderbilt,et al. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.
[35] L. K. Pandit. Linear vector spaces with indefinite metric , 1959 .