Modeling of optimum chiral carbon nanotube using DFT

The geometrical structure of carbon nanotubes has been calculated and analyzed in this paper. The analysis of carbon nanotube for Pz orbital, perpendicular to the graphene sheet and thus the nanotube surface forms a delocalized π network across the nanotube, which is responsible for its electronic properties. These electronic properties are obtained from tight binding (TB) model for graphene. Furthermore, optimized DFT calculation shows the optimum chiral of CNT, which is semiconducting zigzag for SWCNT and MWCNT.

[1]  B. Yakobson,et al.  Ballistic thermal conductance of graphene ribbons. , 2010, Nano letters.

[2]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[3]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[4]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[5]  R O Jones,et al.  The surface energy of a bounded electron gas , 1974 .

[6]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[7]  Chongwu Zhou,et al.  Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.

[8]  王化,et al.  Joubert 综合征一例 , 2006 .

[9]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  Sang Hyun Lee,et al.  Antiseptic single wall carbon nanotube bandages , 2009 .

[12]  D. Cobden,et al.  Kondo physics in carbon nanotubes , 2000, Nature.

[13]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[14]  E. Fermi Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .

[15]  E. Antončík A new formulation of the method of nearly free electrons , 1954 .

[16]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[17]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[18]  Francisco del Monte,et al.  Multiwall carbon nanotube scaffolds for tissue engineering purposes. , 2008, Biomaterials.

[19]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[20]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Mitra Dutta,et al.  Thermal conductivity of carbon nanotubes , 2009 .

[22]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[23]  C. Wang,et al.  Terahertz generation and chaotic dynamics in single-walled zigzag carbon nanotubes. , 2009, Chaos.

[24]  J. F. Stoddart,et al.  Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.

[25]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[26]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[27]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[28]  Ying Tian,et al.  Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. , 2010, Nano letters.

[29]  Yang Xu,et al.  Comparative study on different carbon nanotube materials in terms of transparent conductive coatings. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[32]  A. H. M. Zahirul Alam,et al.  Analysis of CNT electronics structure to design CNTFET , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).

[33]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[34]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[35]  L. K. Pandit Linear vector spaces with indefinite metric , 1959 .