Computing the hyperbolicity constant

If X is a geodesic metric space and x"1,x"2,x"[email protected]?X, a geodesic triangle T={x"1,x"2,x"3} is the union of the three geodesics [x"1x"2], [x"2x"3] and [x"3x"1] in X. The space X is @d-hyperbolic (in the Gromov sense) if any geodesic side of T is contained in a @d-neighborhood of the union of the two other geodesic sides, for every geodesic triangle T in X. We denote by @d(X) the sharpest hyperbolicity constant of X, i.e. @d(X):=inf{@d>=0:X is @d-hyperbolic}. In this paper we prove that in order to compute the hyperbolicity constant in a graph with edges of the same length, it suffices to consider geodesic triangles such that the three points determining those triangles are vertices of the graph or midpoints of edges of the graph. By using this result we prove that the hyperbolicity constant of a graph with edges of length k is a multiple of k/4.

[1]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[2]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[3]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[4]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[5]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[6]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[7]  Sergio Bermudo,et al.  Mathematical Properties of Gromov Hyperbolic Graphs , 2010 .

[8]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[9]  Olivier Ly,et al.  Distance Labeling in Hyperbolic Graphs , 2005, ISAAC.

[10]  E. Jonckheere,et al.  Scaled Gromov hyperbolic graphs , 2008 .

[11]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[12]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[13]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[14]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[15]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[16]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[17]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..