Exploring the structural, electronic, optical properties and stability of Na_2SrX (Si and Ge) full-Heusler alloys: A first principle investigation

[1]  Yong Pan,et al.  Tailoring the hydrogenated mechanism of Pt3Al from first-principles investigation , 2023, Vacuum.

[2]  Kulwinder Kaur,et al.  First principles calculations to investigate Li-based quaternary Heusler compounds LiHfCoX (X = Ge, Sn) for thermoelectric applications , 2022, Physica Scripta.

[3]  Kulwinder Kaur,et al.  First-principles calculations on the electronic structure and thermoelectric properties of quaternary Heusler compounds: LiScPtSi and LiScPdGe , 2022, Materials Today Communications.

[4]  Shengli Zhang,et al.  Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices , 2022, Applied Physics Reviews.

[5]  A. Ramazani,et al.  Tunable indirect to direct band gap transition of Fe2TaX (X=Al and Ga) Heusler alloy under hydrostatic pressure effect , 2022, Computational Materials Science.

[6]  Kulwinder Kaur,et al.  Structural, electronic, vibrational, thermoelectric and mechanical properties of Li based quaternary Heusler compound LiTiCoSn: A DFT approach , 2022, Materials Today: Proceedings.

[7]  M. Roknuzzaman,et al.  Pressure dependent structural, elastic and mechanical properties with ground state electronic and optical properties of half-metallic Heusler compounds Cr2YAl (Y=Mn, Co): first-principles study , 2021, Heliyon.

[8]  S. Davatolhagh,et al.  First principles study of d0-d half-Heusler alloys containing group-IV, -V, and -VI sp atoms as prospective half-metals for real spintronic applications , 2021 .

[9]  D. Rached,et al.  Theoretical insight of stabilities and optoelectronic features of Ru-based Heusler alloys: Ab-initio calculations , 2021 .

[10]  S. Pal,et al.  First-principles calculations to investigate electronic structure and magnetic, mechanical and thermodynamic properties of d0 half-Heusler LiXN (X= Na, K, Rb) alloys , 2021, Solid State Sciences.

[11]  Kulwinder Kaur,et al.  Structural, electronic, mechanical, and thermoelectric properties of LiTiCoX (X = Si, Ge) compounds , 2021, International Journal of Energy Research.

[12]  H. Abbassa,et al.  Robust half-metallicity in CoZrMnZ (Z = P, As and Sb) quaternary Heusler alloys , 2021 .

[13]  M. Ameri,et al.  Full Heusler alloys, with high absorption coefficient, insight into the optical properties of Li2CaC and Li2SrC , 2021 .

[14]  B. Bouhafs,et al.  Electronic structure, mechanical and thermoelectric properties of the full Heusler Ba2AgZ (Z = Bi, Sb) alloys: insights from DFT study , 2021, Indian Journal of Physics.

[15]  G. Murtaza,et al.  Co2YZ (Y= Cr, Nb, Ta, V and Z= Al, Ga) Heusler alloys under the effect of pressure and strain. , 2021, Journal of molecular graphics & modelling.

[16]  A. Belbachir,et al.  First-Principle Study of Structural, Elastic, Electronic and Magnetic Properties of the Quaternary Heusler CoZrFeP , 2020, Journal of Superconductivity and Novel Magnetism.

[17]  M. A. Sattar,et al.  Phonon phase stability, structural, mechanical, electronic, and thermoelectric properties of two new semiconducting quaternary Heusler alloys CoCuZrZ (Z = Ge and Sn) , 2020, International Journal of Energy Research.

[18]  D. Gupta,et al.  Magneto-electronic, thermoelectric, thermodynamic and optical properties of rare earth YCoTiX (X = Al, Ga, Si, Ge) alloys , 2019, Journal of Alloys and Compounds.

[19]  P. Cha,et al.  The n- and p-type thermoelectric response of a semiconducting Co-based quaternary Heusler alloy: a density functional approach , 2019, Journal of Materials Chemistry C.

[20]  B. Bouhafs,et al.  Investigation of new d0 half-metallic full-heusler alloys N2BaX (X=Rb, Cs, Ca and Sr) using first-principle calculations , 2019, Computational Condensed Matter.

[21]  D. Gupta,et al.  Structural, elastic, thermodynamic and thermoelectric properties of Fe2TiSn Heusler alloy: High pressure study , 2019, Results in Physics.

[22]  R. Khenata,et al.  Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors , 2019, Scientific Reports.

[23]  D. Shrivastava,et al.  Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound , 2018 .

[24]  C. Wolverton,et al.  Designing and Discovering a New Family of Semiconducting Quaternary Heusler Compounds Based on the 18-Electron Rule , 2018, Chemistry of Materials.

[25]  M. Sundareswari,et al.  Band gap engineering in ruthenium‐based Heusler alloys for thermoelectric applications , 2018 .

[26]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Jingchuan Zhu,et al.  Theoretical Investigation of Mechanical, Electronic, and Thermal Properties of Fe2TiSi and Fe2TiSn Under Pressure , 2016, Journal of Electronic Materials.

[28]  Stefan Goedecker,et al.  Ultralow Thermal Conductivity in Full Heusler Semiconductors. , 2016, Physical review letters.

[29]  Hong Chen,et al.  Structural, electronic, elastic, and thermodynamic properties of the spin‐gapless semiconducting Mn2CoAl inverse Heusler alloy under pressure , 2015 .

[30]  S. Pandey,et al.  Investigation of the electronic and thermoelectric properties of Fe2ScX (X = P, As and Sb) full Heusler alloys by using first principles calculations , 2014, 1406.3425.

[31]  G. Rignanese,et al.  Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states. , 2014, Physical review letters.

[32]  A. Zaoui,et al.  I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study , 2014 .

[33]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[34]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[35]  J. Herbst,et al.  Structural, Electronic, and Hydriding Properties of Li$_{2}$MgSi , 2010 .

[36]  J. Herbst,et al.  Structural, electronic, and hydriding properties of Li2MgSi , 2010 .

[37]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[39]  Julie Kjendal Reitz Espresso , 2007 .

[40]  P. Dederichs,et al.  Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys , 2002, cond-mat/0205129.

[41]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[42]  Gonze Erratum: Adiabatic density-functional perturbation theory , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  P. Paskov Optical absorption and refraction spectra in highly excited GaSb , 1994 .

[46]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[47]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[48]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[49]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[50]  D. Aspnes,et al.  A NEW RESONANT ELLIPSOMETRIC TECHNIQUE FOR CHARACTERIZING THE INTERFACE BETWEEN GaAs AND ITS PLASMA-GROWN OXIDE. , 1978 .

[51]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[52]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[53]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[54]  D. R. Penn,et al.  Wave-Number-Dependent Dielectric Function of Semiconductors , 1962 .

[55]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[56]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Watt Alloys , 1855, Nature.

[58]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[59]  C. Felser,et al.  Heusler Alloys: Properties, Growth, Applications , 2016 .

[60]  L. Bainsla,et al.  Chapter 1 - Physics and Magnetism of Quaternary Heusler Alloys , 2016 .

[61]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[62]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .