Mass Estimation of Galaxy Clusters with Deep Learning. I. Sunyaev–Zel’dovich Effect

We present a new application of deep learning to infer the masses of galaxy clusters directly from images of the microwave sky. Effectively, this is a novel approach to determining the scaling relation between a cluster's Sunyaev-Zel'dovich (SZ) effect signal and mass. The deep learning algorithm used is mResUNet, which is a modified feed-forward deep learning algorithm that broadly combines residual learning, convolution layers with different dilation rates, image regression activation and a U-Net framework. We train and test the deep learning model using simulated images of the microwave sky that include signals from the cosmic microwave background (CMB), dusty and radio galaxies, instrumental noise as well as the cluster's own SZ signal. The simulated cluster sample covers the mass range 1$\times 10^{14}~\rm M_{\odot}$ $<M_{200\rm c}<$ 8$\times 10^{14}~\rm M_{\odot}$ at $z=0.7$. The trained model estimates the cluster masses with a 1 $\sigma$ uncertainty $\Delta M/M \leq 0.2$, consistent with the input scatter on the SZ signal of 20%. We verify that the model works for realistic SZ profiles even when trained on azimuthally symmetric SZ profiles by using the Magneticum hydrodynamical simulations.

[1]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[2]  B. Nord,et al.  DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks , 2018, Astron. Comput..

[3]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  M. Becker,et al.  ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.

[6]  Thomas Hofmann,et al.  Cosmological constraints with deep learning from KiDS-450 weak lensing maps , 2019, Physical Review D.

[7]  M. Halpern,et al.  Optical design of the atacama cosmology telescope and the millimeter bolometric array camera. , 2006, Applied optics.

[8]  G. Efstathiou,et al.  Cosmology with the pairwise kinematic SZ effect: calibration and validation using hydrodynamical simulations , 2017, 1712.05714.

[9]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[10]  Patrick van der Smagt,et al.  CNN-based Segmentation of Medical Imaging Data , 2017, ArXiv.

[11]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[12]  C. B. D'Andrea,et al.  Weak-lensing analysis of SPT-selected galaxy clusters using Dark Energy Survey Science Verification data , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[14]  S. Kay,et al.  An application of machine learning techniques to galaxy cluster mass estimation using the MACSIS simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[16]  J. J. Bock,et al.  BICEP2 and Keck array: upgrades and improved beam characterization , 2014, Astronomical Telescopes and Instrumentation.

[17]  M. Lueker,et al.  MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σv AND X-RAY YX MEASUREMENTS , 2014, 1407.2942.

[18]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[19]  Lindsay J. King,et al.  Cosmology with the cluster mass function: mass estimators and shape systematics in large weak lensing surveys , 2009, 0901.3434.

[20]  Jorge Moreno,et al.  Deep learning predictions of galaxy merger stage and the importance of observational realism , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  A. Kravtsov,et al.  A UNIVERSAL MODEL FOR HALO CONCENTRATIONS , 2014, 1407.4730.

[22]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[23]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[24]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[25]  Danica J. Sutherland,et al.  A MACHINE LEARNING APPROACH FOR DYNAMICAL MASS MEASUREMENTS OF GALAXY CLUSTERS , 2014, 1410.0686.

[26]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees , 2015, 1512.00910.

[27]  Federico Nati,et al.  Evidence of lensing of the cosmic microwave background by dark matter halos. , 2014, Physical review letters.

[28]  P. A. R. Ade,et al.  The SPTpol Extended Cluster Survey , 2019, The Astrophysical Journal Supplement Series.

[29]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2012, 1201.0991.

[30]  R. C. Smith,et al.  Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  Klaus Dolag,et al.  Using X-Ray Morphological Parameters to Strengthen Galaxy Cluster Mass Estimates via Machine Learning , 2019, The Astrophysical Journal.

[32]  Adrian T. Lee,et al.  Galaxy Clusters Selected via the Sunyaev–Zel’dovich Effect in the SPTpol 100-square-degree Survey , 2019, The Astronomical Journal.

[33]  David N. Spergel,et al.  The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog , 2017, 1709.05600.

[34]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[35]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[36]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[37]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[38]  Stephen Marshall,et al.  Activation Functions: Comparison of trends in Practice and Research for Deep Learning , 2018, ArXiv.

[39]  J. Koppenhoefer,et al.  Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys , 2013, 1310.6744.

[40]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[41]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[42]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[44]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[45]  Prabhat,et al.  CosmoFlow: Using Deep Learning to Learn the Universe at Scale , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[46]  David Donovan,et al.  Weighing the giants– V. Galaxy cluster scaling relations , 2016, 1606.03407.

[47]  The Planck Collaboration The Scientific Programme of Planck , 2006 .

[48]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[49]  Joop Schaye,et al.  The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations , 2016, 1606.04545.

[50]  J. E. Ruhl,et al.  Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope , 2018, The Astrophysical Journal.

[51]  M. Meneghetti,et al.  CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847 , 2013, 1307.5867.

[52]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[53]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.

[54]  Xin Liu,et al.  Deep Learning for Multi-Messenger Astrophysics: A Gateway for Discovery in the Big Data Era , 2019, ArXiv.

[55]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[56]  Daniel George,et al.  Deep Neural Networks to Enable Real-time Multimessenger Astrophysics , 2016, ArXiv.

[57]  B. Póczos,et al.  A Robust and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy Clusters , 2019, The Astrophysical Journal.

[58]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[59]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[60]  H. Hoekstra,et al.  Sunyaev–Zel’dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters , 2017, Monthly Notices of the Royal Astronomical Society.

[61]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[62]  S. W. Allen,et al.  New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters , 2007, 0709.4294.

[63]  Emanuele Usai,et al.  Deep Learning the Morphology of Dark Matter Substructure , 2019 .

[64]  M. Lueker,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE , 2014, 1412.7521.

[65]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[66]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[67]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[68]  F. Marinacci,et al.  A Deep Learning Approach to Galaxy Cluster X-Ray Masses , 2018, The Astrophysical Journal.

[69]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[70]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[71]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[72]  J. Mohr,et al.  Galaxy kinematics and mass calibration in massive SZE-selected galaxy clusters toz = 1.3 , 2017, Monthly Notices of the Royal Astronomical Society.

[73]  P. A. R. Ade,et al.  Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data , 2018, The Astrophysical Journal.

[74]  Takahiro Nishimichi,et al.  The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data , 2019, Publications of the Astronomical Society of Japan.

[75]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[76]  J. Mohr,et al.  SZE observables, pressure profiles and centre offsets in Magneticum simulation galaxy clusters , 2016, 1612.05266.

[77]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[78]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.