Full Protection of Intensely Luminescent Gold(I)-Silver(I) Cluster by Phosphine Ligands and Inorganic Anions.

An intensely luminescent gold(I)-silver(I) cluster [(C)(AuPPhpy2 )6 Ag6 (CF3 CO2 )3 ](BF4 )5 (PPhpy2 =bis(2-pyridyl)phenylphosphine) (3) is synthesized by the reaction of [(C)(AuPPhpy2 )6 Ag4 ](BF4 )6 with AgCF3 CO2 . All eight faces of the octahedral C@Au6 core in 3 are capped, that is, six faces are capped by silver ions and two by tetrafluoroborates. Cluster 3 is intensely luminescent in solution with a quantum yield of 92 %. Ligation of CF3 CO2- ions is vital for the construction and emission properties of 3, as confirmed by DFT calculations. BF4- ions are involved in the protecting sphere of the metal core, as evidenced by 19 F NMR data. The participation of phosphines, CF3 CO2- , and BF4- ions in the protection of the emissive core and the enhancement of the rigidity of the cluster result in the high emission efficiency. This is the first example of organic ligands and inorganic anions forming a rigid protecting sphere for luminescent coinage-metal clusters.

[1]  Meng Zhou,et al.  Solvent Dependent Excited State Behaviors of Luminescent Gold(I)–Silver(I) Cluster with Hypercoordinated Carbon , 2015 .

[2]  Quan‐Ming Wang,et al.  Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) clusters. , 2014, Angewandte Chemie.

[3]  V. Yam,et al.  From {Au(I)···Au(I)}-coupled cages to the cage-built 2-D {Au(I)···Au(I)} arrays: Au(I)···Au(I) bonding interaction driven self-assembly and their Ag(I) sensing and photo-switchable behavior. , 2014, Journal of the American Chemical Society.

[4]  S. Ng,,et al.  Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. , 2014, Journal of the American Chemical Society.

[5]  Yongbo Song,et al.  A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag(x)Au(25-x) nanoclusters: the 13th silver atom matters. , 2014, Angewandte Chemie.

[6]  D. Leong,et al.  Identification of a highly luminescent Au22(SG)18 nanocluster. , 2014, Journal of the American Chemical Society.

[7]  Wei Feng,et al.  A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging. , 2013, Biomaterials.

[8]  S. James,et al.  Synthesis of gold-silver luminescent honeycomb aggregates by both solvent-based and solvent-free methods. , 2012, Angewandte Chemie.

[9]  R. White-Morris,et al.  Crystallization and interconversions of vapor-sensitive, luminescent polymorphs of [(C6H11NC)2Au(I)](AsF6) and [(C6H11NC)2Au(I)](PF6). , 2012, Journal of the American Chemical Society.

[10]  H. Schmidbaur,et al.  Aurophilic interactions as a subject of current research: an up-date. , 2012, Chemical Society Reviews.

[11]  V. Yam,et al.  Luminescent gold(I) complexes for chemosensing , 2011 .

[12]  A. Balch,et al.  Molecular accordion: vapoluminescence and molecular flexibility in the orange and green luminescent crystals of the dimer, Au2(μ-bis-(diphenylphosphino)ethane)2Br2. , 2011, Journal of the American Chemical Society.

[13]  Z. Cao,et al.  A luminescent gold(I)-copper(I) cluster with unprecedented carbon-centered trigonal prismatic hexagold. , 2011, Chemical communications.

[14]  Shinto Varghese,et al.  Role of Molecular Packing in Determining Solid-State Optical Properties of π-Conjugated Materials. , 2011, The journal of physical chemistry letters.

[15]  T. Pakkanen,et al.  Halide-directed assembly of multicomponent systems: highly ordered Au(I)-Ag(I) molecular aggregates. , 2010, Angewandte Chemie.

[16]  P. Chou,et al.  Rational reductive fusion of two heterometallic clusters: formation of a highly stable, intensely phosphorescent Au-Ag aggregate and application in two-photon imaging in human mesenchymal stem cells. , 2010, Chemical communications.

[17]  Tania Lasanta,et al.  Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold-silver clusters. , 2010, Journal of the American Chemical Society.

[18]  Flora L Thorp-Greenwood,et al.  Application of d6 transition metal complexes in fluorescence cell imaging. , 2010, Chemical communications.

[19]  Quan‐Ming Wang,et al.  Intensely luminescent gold(I)-silver(I) cluster with hypercoordinated carbon. , 2009, Journal of the American Chemical Society.

[20]  R. Galassi,et al.  Structures and properties of gold(I) complexes of interest in biochemical applications , 2009 .

[21]  H. Schmidbaur,et al.  A briefing on aurophilicity. , 2008, Chemical Society reviews.

[22]  A. Laguna,et al.  Chalcogenide centred gold complexes. , 2008, Chemical Society reviews.

[23]  T. Pakkanen,et al.  Self-assembly of supramolecular luminescent Au(I)-Cu(I) complexes: "wrapping" an Au6Cu6 cluster in a [Au3(diphosphine)3]3+ "belt". , 2008, Angewandte Chemie.

[24]  J. Schneider,et al.  Strong intra- and intermolecular aurophilic interactions in a new series of brilliantly luminescent dinuclear cationic and neutral au(I) benzimidazolethiolate complexes. , 2008, Inorganic chemistry.

[25]  Yi-zhi Li,et al.  A chiral luminescent Au16 ring self-assembled from achiral components. , 2005, Journal of the American Chemical Society.

[26]  J. Fackler,et al.  Mixed-metal triangular trinuclear complexes: dimers of gold-silver mixed-metal complexes from gold(I) carbeniates and silver(I) 3,5-diphenylpyrazolates. , 2005, Journal of the American Chemical Society.

[27]  Richard Eisenberg,et al.  Intensely luminescent gold(I)-silver(I) cluster complexes with tunable structural features. , 2004, Journal of the American Chemical Society.

[28]  Richard Eisenberg,et al.  Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. , 2003, Journal of the American Chemical Society.

[29]  A. Balch,et al.  Solvent‐Stimulated Luminescence from the Supramolecular Aggregation of a Trinuclear Gold(I) Complex that Displays Extensive Intermolecular AuċAu Interactions , 1997 .

[30]  A. L. Balch,et al.  Solvensstimulierte Lumineszenz eines supramolekular assoziierten dreikernigen Gold(I)-Komplexes mit starken intermolekularen Au-Au-Wechselwirkungen† , 1997 .

[31]  A. Laguna,et al.  Three- and Four-Coordinate Gold(I) Complexes. , 1997, Chemical reviews.

[32]  H. Schmidbaur,et al.  Synthesis of the Hexakis[(triphenylphosphane)gold(I)]methanium(2+) Cation from Trimethylsilyldiazomethane; Crystal Structure Determination of the Tetrafluoroborate Salt , 1997 .

[33]  H. Schmidbaur,et al.  „Aurophilie”︁ als Konsequenz relativistischer Effekte: Das Hexakis(triphenylphosphanaurio)methan‐Dikation [(Ph3PAu)6C]2⊕ , 1988 .

[34]  F. Scherbaum,et al.  “Aurophilicity” as a Consequence of Relativistic Effects: The Hexakis(triphenylphosphaneaurio)methane Dication [(Ph3PAu)6C]2⊕ , 1988 .