MESH CONVERGENCE STUDY FOR 2-D STRAIGHT-BLADE VERTICAL AXIS WIND TURBINE SIMULATIONS AND ESTIMATION FOR 3-D SIMULATIONS

Mesh resolution requirements are investigated for 2-D and 3-D simulations of the complex flow around a straight-blade vertical axis wind turbine (VAWT). The resulting flow, which may include large separation flows over the blades, dynamic stall, and wake-blade interaction, is simulated by an Unsteady Reynolds-Averaged Navier–Stokes analysis, based on the Spalart–Allmaras (S–A) turbulence model. A grid resolution study is conducted on 2-D grids to examine the convergence of the CFD model. Hence, an averaged grid residual of y+ > 30 is employed, along with a wall treatment, to capture the near-wall region’s flow structures. Furthermore a 3-D simulation on a coarse grid of the VAWT model is performed in order to explore the influence of the 3-D effects on the aerodynamic performance of the turbine. Finally, based on the 2-D grid convergence study and the 3-D results, the required computational time and mesh to simulate 3-D VAWT accurately is proposed.